Skip to main content
Log in

Optimization of nisin production by Lactococcus lactis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of nisin by batch culture of Lactococcus lactis ATCC 11454 in MRS broth (pH 6.5), as treated in 30 assays, that were set up by a fractional factorial design of two levels (2[4–1]), was improved. The minimum and maximum concentrations of sucrose (5.0–12.5 g/L), asparagine (7.5–75 g/L), potassium phosphate (6.0–18.0 g/L), and Tween-80 (1.0–6.6 g/L) were added to MRS broth. The best nisin activities ranged from 1.5×104 to 1.8×104 arbitrary units (AU)/mL for the maximum levels of sucrose, asparagine, and monobasic potassium phosphate, and for the minimum concentration of Tween-80. The best following proportions between nutrients were adopted as optimum for maximum specific nisin productivity of about 6.0 mg/mg of dry cell weight (related to 2.5 mg of pure nisin preparation with a specific activity of 1.0×105 AU/mL): C/N=0.17, C/P=0.69, N/P=4.17 (C=sucrose, N=asparagine, P=phosphate, T=Tween-80).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gross, E. and Morell, J. L. (1971), J. Am. Chem. Soc. 93, 4634–4635.

    Article  CAS  Google Scholar 

  2. Immonen, T. (1999), Dissertationes Biocentri Viikki Universitatis Helsingiensis, Helsinki, Finland.

  3. Graeffe, T., Rintala, H., Paulin, L., and Saris, P. E. J. (1991), Nisin and Novel Antibiotics, ESCOM Science Publishers, Leiden, The Netherlands, pp. 260–268.

    Google Scholar 

  4. Mulders J. W., Boerrigter, I. J.; Rollema, H. S.; Siezen, R. J., and de Vos, W. M. (1991), Eur. J. Biochem. 201, 581–584.

    Article  CAS  Google Scholar 

  5. De Vuyst, L. and Vandamme, E. J. (1994), in Bacteriocins of Lactic Acid Bacteria, De Vuyst, L. and Vandamme, E. J., eds., Chapman & Hall, Glasgow, pp. 1–12.

    Google Scholar 

  6. Buchman, G. W.; Banerjee, S., and Hansen, J. N. (1988), J. Biol. Chem. 263, 16,260–16,266.

    CAS  Google Scholar 

  7. De Vuyst, L and Vandamme, E. J. (1992), J. Gen. Microbiol. 138, 571–578.

    Google Scholar 

  8. Stevens, K. A., Sheldon, B. W., Klapes, N. A., and Klaenhammer, T. R. (1991), J. Food Prot. 55, 7763–7766.

    Google Scholar 

  9. Morris, S. L., Walsh, R. C., and Hansen, J. N. (1984), J. Biol. Chem. 259, 13,590–13,594.

    CAS  Google Scholar 

  10. Delves-Broughton J., Blackburn, P., Evans, R. J., and Hugenholtz, J. (1996), Antonie van Leeuwenhoek 69, 193–202.

    Article  CAS  Google Scholar 

  11. De Ruyter, P. G. G. A., Kuipers, O. P., Beerthuyzen, M. M., van Alen-Boerrigter, I., and de Vos, W. M. (1996), J. Bacteriol. 178, 3434–3439.

    Google Scholar 

  12. Elli, M., Zink, R., Reniero, R., and Morelli, L. (1999), Int. Dairy J. 9, 507–513.

    Article  Google Scholar 

  13. Kim, W. S., Hall, R. J., and Dunn, N. W. (1997), Appl. Microbiol. Biotechnol. 48, 449–453.

    Article  CAS  Google Scholar 

  14. Sonomoto, K., Chinachoti, N., Endo, N., and Ishizaki, A. (2000), J. Mol. Catalysis B: Enzymatic 10: 325–334.

    Article  CAS  Google Scholar 

  15. Cocaign-Bousquet, M., Loubiere, P., Matos, J., Goma, G., and Lindley, N. (1997), J. Appl. Microbiol. 82, 95–100.

    Google Scholar 

  16. Shimizu, H., Mizuguchi, T., Tanaka, E., and Shioya, S. (1999), Appl. Environ. Microbiol. 65, 3134–3141.

    CAS  Google Scholar 

  17. Bower, C. K., McGuire, J., and Daeschel, M. A. (1995), J. Ind. Microbiol. 15, 227–233.

    Article  CAS  Google Scholar 

  18. Amiali, M. N., Lacroix, C., and Simard, R. E. (1998), World J. Microbiol. Biotechnol. 14, 887–894.

    Article  CAS  Google Scholar 

  19. De Vuyst, L. (1995), J. Appl. Bacteriol. 78, 28–33.

    CAS  Google Scholar 

  20. Somogyi, M. (1952), J. Biol. Chem. 195, 19–23

    CAS  Google Scholar 

  21. Rogers, A. M. and Montville, T. J. (1991), Food Biotechnol. 5, 161–168.

    CAS  Google Scholar 

  22. Box, G. P., Hunter, W. G., and Hunter, J. S. (1978), Statistics for Experimenters, John Wiley, NY.

    Google Scholar 

  23. Runar Ra, S. (1998), Dissertationes Biocentri Viikki Universitatis Helsingiensis, Helsinki, Finland.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thereza Christina Vessoni Penna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penna, T.C.V., Moraes, D.A. Optimization of nisin production by Lactococcus lactis . Appl Biochem Biotechnol 98, 775–789 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:775

Index Entries

Navigation