Skip to main content
Log in

Sorbitol and gluconic acid production using permeabilized Zymomonas mobilis cells confined by hollow-fiber membranes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Immobilization of Zymomonas mobilis by different methods was investigated. Experiments were performed order to choose the most appropriate support for the immobilization of the cells. The most advantageous option was to use permeabilized cells in the bore of microporous hollow fibers. Whereas the reaction rate was about 33 g of gluconate/ (g of protein·h) using hollow fibers, which is comparable to that observed by using free cells, the calcium alginate immobilized cells presented a reaction rate of 4 g of gluconate/ (g of protein·h). These results can be explained by the mass transfer resistance effect, which, indeed, was much lower in the case of hollow-fiber membranes than in the alginate gel beads. A loss of enzymatic activity during the reaction was observed in all experiments, which was attributed to the lactone produced as an intermediate of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mattey, M. (1992), Crit. Rev. Biotechnol. 12(1/2), 87–132.

    Article  CAS  Google Scholar 

  2. Zachariou, M. and Scopes, R. K. (1986), J. Bacteriol. 167(3), 863–869.

    CAS  Google Scholar 

  3. Ro, H. S. and Kim, H. S. (1991), Enzyme Microb. Biotechnol. 13, 920–924.

    Article  CAS  Google Scholar 

  4. Scopes, R. K., Rogers, P. L., and Leigh, D. A. (1988), US patent no. 4755467.

  5. Bringer-Meyer, S. and Sahm, H. (1991), US patent no. 5017485.

  6. Kim, H.-S. and Park, J.-S. (1993), US patent no. 5177012.

  7. Rehr, B. and Sahm, H. (1992), US patent no. 5102795.

  8. Hardman, J. and Scopes, R. K. (1988), Eur. J. Biochem. 173, 203–209.

    Article  CAS  Google Scholar 

  9. Loos, H., Krämer, R., Sahm, H., et al. (1994), J. Bacteriol. 176(24), 7688–7693.

    CAS  Google Scholar 

  10. Parker, C., Peekhaus, N., Zhang, X., et al. (1997), Appl. Envir. Microbiol. 63(9), 3519–3525.

    CAS  Google Scholar 

  11. Fürlinger, M., Haltrich, D., Kulbe, D., et al. (1998), Eur. J. Biochem. 251, 955–963.

    Article  Google Scholar 

  12. Chun, U. H. and Rogers, P. L. (1988), Appl. Microbiol. Biotechnol. 29, 19–24.

    Article  CAS  Google Scholar 

  13. Rehr, B., Wilhelm, C., and Sahm, H. (1991), Appl. Microbiol. Biotechnol. 35, 144–148.

    Article  CAS  Google Scholar 

  14. Jang, K. H., Park, C. J., and Chun, U. H. (1992), Biotechnol. Lett. 14(4), 311–316.

    Article  CAS  Google Scholar 

  15. Gollhofer, D., Nidetzky, B., Fürlinger, M., et al. (1995), Enzyme Microb. Technol. 17, 235–240.

    Article  CAS  Google Scholar 

  16. Cabral, J. M. S. (1986), Appl. Microbiol. Biotechnol. 23, 157–162.

    Article  CAS  Google Scholar 

  17. Woodward, J. (1988), J. Microbiol. Meth. 8, 91–102.

    Article  CAS  Google Scholar 

  18. Doelle, H. W., Kirk, L., Crittenden, R., et al. (1993), Crit. Rev. Biotechnol. 13(1), 57–98.

    Article  CAS  Google Scholar 

  19. Bunch, A. W. (1988), J. Microbiol. Meth. 8, 103–119.

    Article  CAS  Google Scholar 

  20. Prazeres, D. M. F. and Cabral, J. M. S. (1994), Enzyme Microb. Technol. 16, 738–750.

    Article  CAS  Google Scholar 

  21. Paterson, S. L., Fane, A. G., Fell, C. J. D., et al. (1988), Biocatalysis 1, 217–229.

    Article  CAS  Google Scholar 

  22. Bailey, J. E. and Ollis, D. F. (1986) in Biochemical Engineering Funamentals, 2nd ed., McGraw-Hill, New York.

    Google Scholar 

  23. Bradford, M. M. (1976), Anal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  24. Cordeiro, C. and Freire, A. P. (1994), Anal. Biochem. 223, 321–323.

    Article  CAS  Google Scholar 

  25. Milson, P. E. and Meers, J. L. (1985), in Comprehensive Biotechnology, Moo-Young, M., ed., Pergamon, New York, pp. 598–600.

    Google Scholar 

  26. Degrassi, A., Toffanin, R., Paoletti, S., et al. (1998), Carbohydr. Res. 306, 19–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tito Lívio M. Alves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraz, H.C., Borges, C.P. & Alves, T.L.M. Sorbitol and gluconic acid production using permeabilized Zymomonas mobilis cells confined by hollow-fiber membranes. Appl Biochem Biotechnol 89, 43–53 (2000). https://doi.org/10.1385/ABAB:89:1:43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:89:1:43

Index Entries

Navigation