Skip to main content
Log in

Cellulase production of Trichoderma reesei rut C 30 using steam-pretreated spruce

Hydrolytic potential of cellulases on different substrates

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Various techniques are available for the conversion of lignocellulosics to fuel ethanol. During the last decade processes based on enzymatic hydrolysis of cellulose have been investigated more extensively, showing good yield on both hardwood and softwood. The cellulase production of a filamentous fungi, Trichoderma reesei Rut C30, was examined on carbon sources obtained after steam pretreatment of spruce. These materials were washed fibrous steam-pretreated spruce (SPS), and hem icellulose hydrolysate. The hemicellulose hydrolysate contained, besides water-soluble carbohydrates, lignin and sugar degradation products, which were formed during the pretreatment and proved to be inhibitory to microorganisms. Experiments were performed in a 4-L laboratory fermentor. The hydrolytic capacity of the produced enzyme solutions was compared with two commercially available enzyme preparations, Celluclast and logen Cellulase, on SPS, washed SPS, and Solka Floc cellulose powder. There was no significant difference among the different enzymes produced by T. reesei Rut C30. However, the conversion of cellulose using these enzymes was higher than that obtained with logen or Celluclast cellulases using steam-pretreated spruce as substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vallander, L. (1996), Proceedings of the 2nd European Motor Biofuels Forum, Joanneum Research Forschungsgesellschaft, Graz, Austria, pp. 77–80.

  2. Gregg, D. J. and Saddler, J. (1966), Proceedings of the 2nd Eur. Mot. Biofuels Forum, Joanneum Research Forschungsgesellschaft, Graz, Austria, pp. 55–60.

  3. Vallander, L. and Eriksson, K.-E.L. (1990), Adv. Biochem. Eng./Biotechnol. 42, 63–95.

    CAS  Google Scholar 

  4. Wyman, C. E. (1995), in Conference Proceedings of European Biomass Conference 8, Elsevier, Oxford, UK, pp. 1094–1107.

    Google Scholar 

  5. McMillan, J. D. (1997), Renewable Energy 10, 295–302.

    Article  CAS  Google Scholar 

  6. Reczey, K., László, E., and Holló, J. (1986), Starch 38, 306–310.

    Article  CAS  Google Scholar 

  7. Fein, J. E., Potts, D., Good, D., O'Boyle, A., Dahlgren, D., Beck, M. J., and Griffith, R. L. (1991), in Conference Proceedings of Energy from Biomass and Wastes 15, Institute of Gas Technology, Chicago, IL, pp. 754–765.

    Google Scholar 

  8. Wright, J. D. and Power A. J. (1987), in Conference Proceedings of Energy from Biomass and Wastes 10, Elsevier, London, pp. 949–971.

    Google Scholar 

  9. von Sivers, M. and Zacchi, G. (1995), Bioresour. Technol. 51, 43–52.

    Article  Google Scholar 

  10. von Sivers, M. and Zacchi, G. (1996), Bioresour. Technol. 56, 131–140.

    Article  Google Scholar 

  11. Clausen, E. C. and Gaddy, J. L. (1985), Biomass Energy Development, Proceedings of 3rd Conference on Southern Biomass Energy Research, Plenum, New York, pp. 551–560.

    Google Scholar 

  12. Bull, S. R. (1990), Energy Biomass Wastes 13, 1263–1279.

    CAS  Google Scholar 

  13. Jurasek, L. (1979), Dev. Ind. Microbiol. 20, 177–189.

    Google Scholar 

  14. Saddler, J. N., Brownell, H. H., Clermont, L. P., and Levitin, N. (1982), Biotechnol. Bioeng. 24, 1389–1402.

    Article  CAS  Google Scholar 

  15. Grethlen, H. E., Allen, D. C., and Converse, A. O. (1984), Biotechnol. Bioeng. 26, 1498–1505.

    Article  Google Scholar 

  16. Galbe, M., Eklund, R., and Zacchi, G. (1990), Appl. Biochem. Biotechnol. 24/25, 87–101.

    Google Scholar 

  17. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., Larsson, M., Stenberg, K., Szengyel, Zs., Tengborg, C., and Zacchi, G. (1996), Bioresour. Technol. 58, 171–179.

    Article  CAS  Google Scholar 

  18. Saddler, J. N. ed. (1993), in Bioconversion of Forest and Agricultural Plant Residues, CAB International, Wallingford, UK, pp. 73–92.

    Google Scholar 

  19. Wood, T. M. (1989), Enzyme Syst. Lignocellul. Degrad. Workshop Prod., Charact. Appl. Cellul.-Hemicellul.-Lignin-Degrading Enzyme Syst., Coughlan, M. P., ed., Elsevier, London, pp. 5–16.

    Google Scholar 

  20. Wood, T. M. and Garcia-Campavo, V. (1990), Biodegradation 1, 147–161.

    Article  CAS  Google Scholar 

  21. Mandels, M. and Reese, E. T. (1963), in Advances in Enzymatic Hydrolysis of Cellulose and Related Material, Reese, E. T., ed. Pergamon, London, pp. 115–157.

    Google Scholar 

  22. Eklund, R., Galbe, M., and Zacchi, G. (1990), Enzyme Microbiol. Technol. 12, 225–228.

    Article  CAS  Google Scholar 

  23. Breuil, C., Chan, M., and Saddler, J. N. (1990), Appl. Microbiol. Biotechnol. 34, 31–35.

    Article  CAS  Google Scholar 

  24. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., and Zacchi, G. (1996), Enzyme Microbiol. Technol. 19, 470–476.

    Article  CAS  Google Scholar 

  25. Olsson, L. and Hahn-Hägerdal, B. (1993), Process Biochem. 28, 249–257.

    Article  CAS  Google Scholar 

  26. Szengvel, Zs., Zacchi, G., and Réczey, K. (1997), Appl. Biochem. Biotechnol. 63–65, 351–362.

    Article  Google Scholar 

  27. Hägglund, E. (1951), in Chemistry of Wood, Academic, New York.

    Google Scholar 

  28. Stenberg, K., Tengborg, C., Galbe, M., and Zacchi, G. (1998), J. Chem. Technol. Biotechnol. 71, 299–308.

    Article  CAS  Google Scholar 

  29. Mandels, M. and Weber, J. (1969), Adv. Chem. Ser. 95, 391–414.

    Article  CAS  Google Scholar 

  30. Réczey, K., Szengyel, Zs., Eklund, R., and Zacchi, G. (1996), Bioresour. Technol. 57, 25–30.

    Article  Google Scholar 

  31. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.

    CAS  Google Scholar 

  32. Berghem, L. E. R. and Petterson, L. G. (1974), Eur. J. Biochem. 46, 295–305.

    Article  CAS  Google Scholar 

  33. Ghose, T. (1984), Measurement of Cellulase Activity, Commission on Biotechnology, International Union of Pure and Applied Chemistry, New Delhi.

    Google Scholar 

  34. Palmqvist, E. (1998), PhD thesis, Lund University, Lund, Sweden.

  35. Clark, T. A. and Mackie, K. L. (1987), J. Wood. Chem. Technol. 7(3), 373–403.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Szengyel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szengyel, Z., Zacchi, G., Varga, A. et al. Cellulase production of Trichoderma reesei rut C 30 using steam-pretreated spruce. Appl Biochem Biotechnol 84, 679–691 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:84-86:1-9:679

Index Entries

Navigation