Skip to main content
Log in

Modeling of a continuous pretreatment reactor using computational fluid dynamics

  • Session 2 Today's Biorefineries
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Computational fluid dynamic simulations are employed to predict flow characteristics in a continuous auger driven reactor designed for the dilure acid pretreatment of biomass. Slurry containing a high concentration of biomass solids exhibits a high viscosity, which poses unique mixing issues within the reactor. The viscosity increases significantly with a small increase in solids concentration and also varies with temperature. A well-mixed slurry is desirable to evenly distribute acid on biomass, prevent buildup on the walls of the reactor, and provides an uniform final product. Simulations provide flow patterns obtained over a wide range of viscosities and pressure distributions, which may affect reaction rates. Results provide a tool for analyzing sources of inconsistencies in product quality and insight into future design and operating parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

c:

Newtonian proportionality constant (dimensionless)

D:

Diameter (m)

F:

Volumetric flow rate (m3/s)

k:

Shear rate constant (dimensionless)

L:

Length (m)

M:

Torque (Nm)

N:

Rotation rate (rps)

P:

Pressure (Pa)

r:

Redius (m)

Re:

Reynolds number (dimensionless)

V:

Velocity (m/s)

γ:

Shear rate (/s)

η:

Viscosity (kg/m·s)

π:

Density (kg/m3)

References

  1. Schell, D.J., Walter, P.J., and Johnson, D.K. (1992), Appl. Biochem. Biotechnol. 34–35, 659–665.

    Google Scholar 

  2. Schell, D. J., Farmer, J., Newman, M., and McMillan, J. D. (2003), Appl. Biochem. Biotechnol. 105–108, 69–85.

    Article  Google Scholar 

  3. Zhu, Y., Lee, Y. Y., and Elander, R. T. (2005), Appl. Biochem. Biotechnol. 121–124 1045–1054.

    Article  Google Scholar 

  4. Torget, R. W., Walter, P. J., Himmel, M., and Grohmann, K. (1991), Appl. Biochem. Biotechnol. 28–29, 75–86.

    Google Scholar 

  5. Wang, S. S. and Converse, A. O. (1992), Appl. Biochem. Biotechnol. 34–35, 61–75.

    Google Scholar 

  6. McMillan, J. D. (1997), Renewable Energy 10(2/3), 295–302.

    Article  CAS  Google Scholar 

  7. Nguyen, Q. A., Keller, F. A., Tucker, M. P., et al. (1999), Appl. Biochem. Biotechnol. 77–79, 455–472.

    Article  Google Scholar 

  8. Teixeira, L. C., Linden, J. C., and Schroeder, H. A. (1999), Appl. Biochem. Biotechnol. 77–79, 19–34.

    Article  Google Scholar 

  9. Choi, C. H. and Matthews, A. P. (1996), Bioresour. Technol. 58(2), 101–106.

    Article  CAS  Google Scholar 

  10. Taherzadeh, M. J., Elkund, R., Gustafsson, L., Nicklasson, C., and Liden, G. (1997) Ind. Eng. Chem. Res. 36(11), 4659–4665.

    Article  CAS  Google Scholar 

  11. Tucker, M. P., Farmer, J. D., Keller, F. A., Schell, D. J., and Nguyen, Q. A. (1998), Appl. Biochem. Biotechnol. 70–72, 25–35.

    Article  Google Scholar 

  12. Nguyen, Q. A., Tucker, M. P., Keller, F. A., and Eddy, F. P. (2000) Appl. Biochem. Biotechnol. 84–86, 561–576.

    Article  Google Scholar 

  13. Torget, R. W., Hayward, T. K., and Elander, R. (1997), presented at the 19th Symposium on Biotechnology for Fuels and Chemicals, Colorado Springs, CO.

  14. Chen, R., Wu, Z., and Lee, Y.Y. (1998), Appl. Biochem. Biotechnol. 70–72, 37–49.

    Google Scholar 

  15. Lee, Y.Y., Wu, Z., and Torget, R. W. (2000), Bioresour. Technol. 71, 29–39.

    Article  CAS  Google Scholar 

  16. Converse, A. O. (2002), Bioresour. Technol. 81, 109–116.

    Article  CAS  Google Scholar 

  17. Berson, R. E. and Hanley, T. R. (2005), Appl. Biochem. Biotechnol. 121–124, 935–945.

    Article  Google Scholar 

  18. Allen, D. G. and Robinson, C. W. (1990), Chem. Eng. Sci. 45(1), 37–48.

    Article  CAS  Google Scholar 

  19. Fluent, Inc. (2003) FLUENT 6.1 User's Guide, Fluent, Inc., Lebanon, NH.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Eric Berson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berson, R.E., Dasari, R.K. & Hanley, T.R. Modeling of a continuous pretreatment reactor using computational fluid dynamics. Appl Biochem Biotechnol 130, 621–630 (2006). https://doi.org/10.1385/ABAB:130:1:621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:130:1:621

Index Entries

Navigation