Skip to main content
Log in

Effect of Mn2+, Co2+, Ni2+, and Cu2+ on horseradish peroxidase

Activation, inhibition, and denaturation studies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of transition metal ions (M2+) such as Mn2+, Co2+, Ni2+, and Cu2+ on the functional and structural stabilities of horseradish peroxidase (HRP) were investigated with respect to reversible chemical denaturation, Michaelis-Menten kinetics, chemical modification and time-dependent catalytic activity. Conformational Gibbs free energy (ΔG°(H2O)) as a structural stability criterion and transition concentrations of metal ions ([M2+]1/2) were estimated using a two-state chemical denaturation model. Activation and inhibitory concentration ranges for each metal ion were specified by the steady-state enzyme kinetics. Results of a pH-profile method confirmed by chemical modification indicate that a histidine residue interacts in the activation concentration range, whereas carboxylic residues (Asp and Glu) contribute to interaction in the inhibitory concentration range. Incubation of the enzyme with the metal ion at activation concentration leads to long-term functional stability of peroxidase. Thus, such metal ions as potent effectors induced the enhancement of conformational and functional stabilities of horseradish peroxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dunford, H. B. (1999) Heme Peroxidases, Wiley, New York.

    Google Scholar 

  2. Illenas, A. (1999), Electron. J. Biotech. 2, 7–15.

    Google Scholar 

  3. Khajeh, K. and Nemat-Gorgani, M. (2001), Appl. Biochem. Biotech. 90, 1–9.

    Article  Google Scholar 

  4. Garcia, D., and Marty, J. (1998), Appl. Biochem. Bioeng. 73 173–184.

    CAS  Google Scholar 

  5. Triantafyllou, A., Wehtje, E., Adlercreutz, P., and Mattiasson, B. (1997), Biotech. Bioeng. 54, 67–76.

    Article  CAS  Google Scholar 

  6. Khajeh, K., Naderi-Manesh, H., Ranjbar, B., Moosavi-Movahedi, A. A., and Nemat-Gorgani, M. (2001), Enzyme Microb. Technol. 28, 543–549.

    Article  CAS  Google Scholar 

  7. Woodlock, A. F. and Harrap, B. S. (1968), Aust. J. Biol. Sci. 21, 821–826.

    CAS  Google Scholar 

  8. Schleich, T., and von Hippel, P. H. (1970), Biochemistry, 9, 1059–1066.

    Article  CAS  Google Scholar 

  9. Sipos, T. and Merkel, J. R. (1970), Biochemistry 9, 2766–2775.

    Article  CAS  Google Scholar 

  10. Wilson, R. H., Evans, H. J., and Becker, R. R. (1967), J. Biol. Chem. 242, 3825–3832.

    CAS  Google Scholar 

  11. Von Hippel, P. H. and Wong, K. Y. (1965), J. Biol. Chem. 240, 3909–3923.

    Google Scholar 

  12. Jpn. Kokai Tokkyo Koho JP07, 177,883 [95,177,833], 18 July 1995.

  13. Holzbauer, I. E., English, A. M., and Ismail, A. A. (1996), Biochemistry 35, 5488–5494.

    Article  Google Scholar 

  14. Tsaprailis, G., Chan, D. W. S., and English, A. M. (1998) Biochemistry 37, 2004–2016.

    Article  CAS  Google Scholar 

  15. Moosavi-Movahedi, A. A., Nazari, K., and Saboury, A. A. (1997), Colloids Surf. B Biointerf. 9, 123–130.

    Article  CAS  Google Scholar 

  16. Chattopadhyay, K. and Mazumdar, S. (2000), Biochemistry 39, 263–270.

    Article  CAS  Google Scholar 

  17. Haschke, R. H. and Friedhoff, J. M. (1978), Biochem. Biophys. Res Commun. 80, 1039–1042.

    Article  CAS  Google Scholar 

  18. Ogawa, S., Shiro, Y. and Morishima, I. (1979), Biochem. Biophys. Res Commun. 90, 674–678.

    Article  CAS  Google Scholar 

  19. Shiro, Y., Kurono, M., and Morishima, I. (1986), J. Biol. Chem. 261, 9382–9390.

    CAS  Google Scholar 

  20. Morishima, I., Kurano, M., and Shiro, Y. (1986), J. Biol. Chem. 261 9391–9399.

    CAS  Google Scholar 

  21. Kaposi, A. D., Fidy, J., Manas, E. S., Vanderkooi, J. M., and Wright, W. W. (1999), Biochim. Biophys. Acta 1435, 41–50.

    CAS  Google Scholar 

  22. Gajhede, M., Schuller, D. J., Henriksen, A., Smith, A. T., and Poulos, T. L. (1997), Nat. Struct. Biol. 4, 1032–1038.

    Article  CAS  Google Scholar 

  23. Smith, A. T., Santama, N., Dacey, S., Edwards, M., Bray, R. C., Thorneley, R. N. F., et al. (1990), J. Biol. Chem. 265, 13,335–13,343.

    CAS  Google Scholar 

  24. Pahari, D., Patel, A. B. and Behere, D. V. (1995) J. Inorg. Biochem. 60, 245–255.

    Article  CAS  Google Scholar 

  25. Moosavi-Movahedi, A. A. and Nazari, K. (1995), Int. J. Biol. Macromol. 17, 43–47.

    Article  CAS  Google Scholar 

  26. Pappa, H. S. and Cass, A. E. G. (1993), Eur. J. Biochem. 212, 227–235.

    Article  CAS  Google Scholar 

  27. Smulevich, G., Feis, A., Indiani, C., Becucci, M., and Marzocchi, M. P. (1999) J. Biol. Inorg. Chem. 4, 39–47.

    Article  CAS  Google Scholar 

  28. Henriksen, A., Schuller, D. J., Meno, K., Welinder, K. G., Smith, A. T., and Gajhede, M. (1998), Biochemistry 37, 8054–8060.

    Article  CAS  Google Scholar 

  29. Brzyska, M., Ciêszczy, K., and Łobarzewski, J. (1997), J. Chem. Tech. Biotech. 68, 101–109.

    Article  CAS  Google Scholar 

  30. Guilbault, G. G., Brignac, P. Jr., and Zimmer, M. (1968), Anal. Chem. 40, 190–196.

    Article  CAS  Google Scholar 

  31. Converso, D. A., Fernandez, M. E., and Tomaro, M. L. (2000) J. Enzyme Inhib. 15, 171–183.

    Article  CAS  Google Scholar 

  32. Youngs, H. L., Sundaramoorthy, M., and Gold, H. (2000), Eur. J. Biochem. 267, 1761–1769.

    Article  CAS  Google Scholar 

  33. Maehly, A. C. (1955), Methods Enzymol. II, 801–813.

    Article  Google Scholar 

  34. Beer, R. F., Jr. and Sizer, I. W. (1952), J. Biol. Chem. 195, 133–140.

    Google Scholar 

  35. Chauthaiwale, J. and Rao, M. (1994) Biochim. Biophys. Acta 1204, 164–168.

    CAS  Google Scholar 

  36. Miles, E. W. (1977) Methods Enzymol. 47, 431–442.

    CAS  Google Scholar 

  37. Pace, C. N., Shirley, B. A., Mcnutt, M., and Gajiwala, K. (1996) FASEB J. 10, 75–83.

    CAS  Google Scholar 

  38. Pace, C. N. (1986), Methods Enzymol. 13, 266–280.

    Article  Google Scholar 

  39. Pace, C. N. (1990), Trends Biochem. Sci. 15, 14–17.

    Article  CAS  Google Scholar 

  40. Palmer, T. L. (1991), Understanding Enzymes, 3rd ed., Ellis Horwood, New York, pp. 139–212.

    Google Scholar 

  41. Farzami, B. (1992), Metal Ions in Biology and Medicine, (Anatussopoulou, U. Z. and Collery, P., eds.), John Libbey Eurotext, Paris, p. 102.

    Google Scholar 

  42. Farzami, B., Kuimov, A. N., and Kochetov, G. A. (1992), J. Sci. I. R. Iran 3, 81–85.

    CAS  Google Scholar 

  43. Farzami, B., Moosavi-Movahedi, A. A., and Naderi, G. A. (1994), Int. J. Biol. Macromol. 16, 181–186.

    Article  CAS  Google Scholar 

  44. Modi, S. (1995), Biometals 8, 218–222.

    Article  CAS  Google Scholar 

  45. Farzami, B., Nazari, K., and Moosavi-Movahedi, A. A. (1997), J. Sci. I. R. Iran 8, 209–216.

    CAS  Google Scholar 

  46. Rulisek, L. and Vondrasek, J. (1998), J. Inorg. Biochem. 71, 115–127.

    Article  CAS  Google Scholar 

  47. Welinder, K. G. (1985), Eur. J. Biochem. 151, 497–504.

    Article  CAS  Google Scholar 

  48. Polous, T. L. and Kraut, J. (1980), J. Biol. Chem. 225, 8199–8205.

    Google Scholar 

  49. Rodriguez-Lopez, J. N., Smith, A. T., and Thorneley, R. N. F. (1996), J. Biol. Inorg. Chem. 1, 136–142.

    Article  CAS  Google Scholar 

  50. Mahmoudi, A., Nazari, K., Moosavi-Movahedi, A. A., and Saboury, A. A. (2002), Thermochimica Acta 385, 33–39.

    Article  CAS  Google Scholar 

  51. Shi, X., Dalal, S., and Kasprzak, K. S. (1992), Arch. Biochem. Biophys. 299, 154–162.

    Article  CAS  Google Scholar 

  52. Dutta, A. K., Misra, M., North, S. L., and Kasprzak, K. S. (1992), Carcinogenesis 13, 283–287.

    Article  CAS  Google Scholar 

  53. Louie, A. Y. and Maede, T. J. (1999), Chem. Rev. 99, 2711–2734.

    Article  CAS  Google Scholar 

  54. Sigel, H. (1969), Angew. Chem. Internat. Edit. 8, 167–177.

    Article  CAS  Google Scholar 

  55. Hay, R. W. (1991), Bio-Inorganic Chemistry, Ellis Horwood, New York, p. 24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Moosavi-Movahedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoudi, A., Nazari, K., Mohammadian, N. et al. Effect of Mn2+, Co2+, Ni2+, and Cu2+ on horseradish peroxidase. Appl Biochem Biotechnol 104, 81–94 (2003). https://doi.org/10.1385/ABAB:104:1:81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:104:1:81

Index Entries

Navigation