Skip to main content
Log in

Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Furfural and hydroxymethylfurfural (HMF) are representative inhibitors among many inhibitive compounds derived from biomass degradation and saccharification for bioethanol fermentation. Most yeasts, including industrial strains, are susceptible to these inhibitory compounds, especially when multiple inhibitors are present. Additional detoxification steps add cost and complexity to the process and generate additional waste products. To promote efficient bioethanol production, we studied the mechanisms of stress tolerance, particularly to fermentation inhibitors such as furfural and HMF. We recently reported a metabolite of 2,5-bis-hydroxymethylfuran as a conversion product of HMF and characterized a dose-dependent response of ethanologenic yeasts to inhibitors. In this study, we present newly adapted strains that demonstrated higher levels of tolerance to furfural and HMF. Saccharomyces cerevisiae 307-12H60 and 307-12H120 and Pichia stipitis 307 10H60 showed enhanced biotransformation ability to reduce HMF to 2,5-bis-hydroxymethylfuran at 30 and 60 mM, and S. cerevisiae 307-12-F40 converted furfural into furfuryl alcohol at significantly higher rates compared to the parental strains. Strains of S. cerevisiae converted 100% of HMF at 60 mM and S. cerevisiae 307-12-F40 converted 100% of furfural into furfuryl alcohol at 30 mM. The results of this study suggest a possible in situ detoxification of the inhibitors by using more inhibitor-tolerant yeast strains for bioethanol fermentation. The development of such tolerant strains provided a basis and useful materials for further studies on the mechanisms of stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bothast, R. J. and Saha, B. C. (1997), Adv. Appl. Microbiol. 44, 261–286.

    Article  CAS  Google Scholar 

  2. Saha, B. C. (2003), J. Ind. Microbiol. Biotechnol. 30, 279–291.

    Article  CAS  Google Scholar 

  3. Luo, G., Brink, D. L., and Blanch, H. W. (2002), Biomass. Bioenergy 22, 125–138.

    Article  CAS  Google Scholar 

  4. Taherzadeh, M. J., Gustafsson, L., and Niklasson, C. (2000), Appl. Microbiol. Biotechnol. 53, 701–708.

    Article  CAS  Google Scholar 

  5. Martin, C. and Jonsson, L. J. (2003), Enzyme. Microb. Technol. 32, 386–395.

    Article  CAS  Google Scholar 

  6. Sanchez, B., and Bautista, J. (1988), Enzyme. Microb. Technol. 10, 315–318.

    Article  CAS  Google Scholar 

  7. Khan, Q. A., and Hadi, S. M. (1994), Biochem. Mol. Biol. Int. 32, 379–385.

    CAS  Google Scholar 

  8. Modig, T., Liden, G., and Taherzadeh, M. J. (2002), Biochem. J. 363, 769–776.

    Article  CAS  Google Scholar 

  9. Liu, Z. L., Slininger, P. J., Dien, B. S., Berhow, M. A., Kurtzman, C. P., and Gorsich, S. W. (2004), J. Ind. Microbiol. Biotechnol. 31, 345–352.

    CAS  Google Scholar 

  10. Ho, N. W. Y., Chen, Z., and Brainard, A. P. (1998), Appl. Enviro. Microbiol. 64, 1852–1859.

    CAS  Google Scholar 

  11. Jeffries, T. W. and Shi, N. Q. (1999), Adv. Biochem. Eng. Biotechnol. 65, 117–161.

    CAS  Google Scholar 

  12. Ostergaard, S., Olsson, L. and Nielsen, J. (2000), Microbiol. Mol. Bio. Rev. 64, 34–50.

    Article  CAS  Google Scholar 

  13. Hahn-Hagerdal, B., Wahlbom, C. F., Gardony, M., Van Zyl, W. H., Otero, R. R. C., and Jonsson, L. J. (2001), Adv. Biochem. Eng. Biotechnol. 73, 53–84.

    CAS  Google Scholar 

  14. Nigam, J. N. (2001), J. Biotechnol. 87, 17–27.

    Article  CAS  Google Scholar 

  15. Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., Lee, T. I., True, H. L., Lander, E. S., and Young, R. A. (2001), Mol. Biolol. Cell. 12, 323–337.

    CAS  Google Scholar 

  16. Hohmann, S. (2002), Microbiol. Mol. Biol. Rev. 66, 300–372.

    Article  CAS  Google Scholar 

  17. Gasch, A. P., and Werner-Washburne, M. (2002), Funct. Integr. Genomics 2, 181–192.

    Article  CAS  Google Scholar 

  18. Erasmus, D. J., van der Merwe, G. K., and van Vuuren, H. J. J. (2003), Yeast Res. 3, 375–399.

    Article  CAS  Google Scholar 

  19. Blomberg, A. (2000), Microbiol. Lett. 182, 1–8.

    Article  CAS  Google Scholar 

  20. Mager, W. H. and Siderivs, M. (2002), Yeast. Res. 2, 251–257.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Lewis Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z.L., Slininger, P.J. & Gorsich, S.W. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121, 451–460 (2005). https://doi.org/10.1385/ABAB:121:1-3:0451

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:121:1-3:0451

Index Entries

Navigation