Skip to main content

Structure and Stability of the α-Helix

Lessons for Design

  • Protocol
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 340))

Abstract

The α-helix is the most abundant secondary structure in proteins. We now have an excellent understanding of the rules for helix formation because of experimental studies of helices in isolated peptides and within proteins, examination of helices in crystal structures, computer modeling and simulations, and theoretical work. Here we discuss structural features that are important for designing peptide helices, including amino acid preferences for interior and terminal positions, side chain interactions, disulfide bonding, metal binding, and phosphorylation. The solubility and stability of a potential design can be predicted with helical wheels and helix/coil theory, respectively. The helical content of a peptide is most often quantified by circular dichroism, so its use is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barlow, D. J. and Thornton, J. M. (1988) Helix geometry in proteins. J. Mol. Biol. 201, 601–619.

    Article  PubMed  CAS  Google Scholar 

  2. Scholtz, J. M. and Baldwin, R. L. (1992) The mechanism of α-helix formation by peptides. Ann. Rev. Biophys. Biomol. Struct. 21, 95–118.

    Article  CAS  Google Scholar 

  3. Baldwin, R. L. (1995) α-helix formation by peptides of defined sequence. Biophys. Chem. 55, 127–135.

    Article  PubMed  CAS  Google Scholar 

  4. Chakrabartty, A. and Baldwin, R. L. (1995) Stability of alpha-helices. Adv. Protein Chem. 46, 141–176.

    Article  PubMed  CAS  Google Scholar 

  5. Kallenbach, N. R., Lyu, P., and Zhou, H. (1996) CD spectroscopy and the helixcoil transition in peptides and polypeptides, in Circular Dichroism and the Conformational Analysis of Biomolecules (Fasman G. D., ed.), Plenum Press: New York, pp. 202–257.

    Google Scholar 

  6. Rohl, C. A. and Baldwin, R. L. (1998) Deciphering rules of helix stability in peptides. Meth. Enzymol. 295, 1–26.

    Article  PubMed  CAS  Google Scholar 

  7. Andrews, M. J. I. and Tabor, A. B. (1999) Forming stable helical peptides using natural and artificial amino acids. Tetrahedron 55, 11711–11743.

    Article  CAS  Google Scholar 

  8. Serrano, L. (2000) The relationship between sequence and structure in elementary folding units. Adv. Prot. Chem. 53, 49–85.

    Article  CAS  Google Scholar 

  9. Richardson, J. S. and Richardson, D. C. (1988) Amino acid preferences for specific locations at the ends of α helices. Science 240, 1648–1652.

    Article  PubMed  CAS  Google Scholar 

  10. Presta, L. G. and Rose, G. D. (1988) Helix signals in proteins. Science 240, 1632–1641.

    Article  PubMed  CAS  Google Scholar 

  11. Serrano, L. and Fersht, A. R. (1989) Capping and alpha-helix stability. Nature 342, 296–299.

    Article  PubMed  CAS  Google Scholar 

  12. Bell, J. A., Becktel, W. J., Sauer, U., Baase, W. A., and Matthews, B. W. (1992) Dissection of helix capping in T4 lysozyme by structural and thermodynamic analysis of six amino acid substitutions at Thr 59. Biochemistry 31, 3590–3596.

    Article  PubMed  CAS  Google Scholar 

  13. Chakrabartty, A., Doig, A., and Baldwin, R. (1993) Helix capping propensities in peptides parallel those in proteins. Proc. Natl. Acad. Sci. USA 90, 11332–11336.

    Article  PubMed  CAS  Google Scholar 

  14. Forood, B., Feliciano, E. J., and Nambiar, K. P. (1993) Stabilization of alphahelical structures in short peptides via end capping. Proc. Natl. Acad. Sci. USA 90, 838–842.

    Article  PubMed  CAS  Google Scholar 

  15. Dasgupta, S. and Bell, J. A. (1993) Design of helix ends. Amino acid preferences, hydrogen bonding and electrostatic interactions. Int. J. Pept. Prot. Res. 41, 499–511.

    Article  CAS  Google Scholar 

  16. Harper, E. T. and Rose, G. D. (1993) Helix stop signals in proteins and peptides: the capping box. Biochemistry 32, 7605–7609.

    Article  PubMed  CAS  Google Scholar 

  17. Seale, J. W., Srinivasan, R., and Rose G. D. (1994) Sequence determinants of the capping box, a stabilizing motif at the N-termini of α-helices. Prot. Sci. 3, 1741–1745.

    Article  CAS  Google Scholar 

  18. Munoz, V., Blanco, F. J. and Serrano, L. (1995) The hydrophobic staple motif and a role for loop-residues in α-helix stability and protein folding. Struct. Biol. 2, 380–385.

    Article  CAS  Google Scholar 

  19. Schellman, C. (1980) The alphaL conformation at the ends of helices. Protein Folding 53–61.

    Google Scholar 

  20. Aurora, R., Srinivasan, R., and Rose, G. D. (1994) Rules for α-helix termination by glycine. Science 264, 1126–1130.

    Article  PubMed  CAS  Google Scholar 

  21. Aurora, R. and Rose, G. D. (1998) Helix capping. Protein Sci. 7, 21–38.

    PubMed  CAS  Google Scholar 

  22. Wada, A. (1976) The α-helix as an electric macro-dipole. Adv. Biophys. 9, 1–63.

    CAS  Google Scholar 

  23. Hol, W. G., van Duijnen, P. T., and Berendsen, H. J. (1978) The alpha-helix dipole and the properties of proteins. Nature 273, 443–446.

    Article  PubMed  CAS  Google Scholar 

  24. Aqvist, J., Luecke, H., Quiocho, F. A., and Warshel, A. (1991) Dipoles located at helix termini of proteins stabilize charges. Proc. Nat. Acad. Sci. USA 88, 2026–2030.

    Article  PubMed  CAS  Google Scholar 

  25. Doig, A. J. and Baldwin, R. L. (1995) N-and C-capping preferences for all 20 amino acids in α-helical peptides. Protein Sci. 4, 1325–1336.

    Article  PubMed  CAS  Google Scholar 

  26. Cochran, D. A. E. and Doig, A. J. (2001) Effects of the N2 residue on the stability of the α-helix for all 20 amino acids. Protein Sci. 10, 1305–1311.

    Article  PubMed  CAS  Google Scholar 

  27. Cochran, D. A. E., Penel, S., and Doig, A. J. (2001) Effect of the N1 residue on the stability of the α-helix for all 20 amino acids. Protein Sci. 10, 463–470.

    Article  PubMed  CAS  Google Scholar 

  28. Iqbalsyah, T. M. and Doig, A. J. (2004) Effect of the N3 residue on the stability of the alpha-helix. Protein Sci. 13, 32–39.

    Article  PubMed  CAS  Google Scholar 

  29. Doig, A.J., MacArthur, M. W., Stapley, B. J., and Thornton, J. M. (1997) Structures of N-termini of helices in proteins. Protein Sci. 6, 147–155.

    Article  PubMed  CAS  Google Scholar 

  30. Penel, S., Hughes, E., and Doig, A. J. (1999) Side-chain structures in the first turn of the α-helix. J. Mol. Biol. 287, 127–143.

    Article  PubMed  CAS  Google Scholar 

  31. Marqusee, S. and Baldwin, R. L. (1987) Helix stabilization by Glu–...Lys+ salt bridges in short peptides of de novo design. Proc. Natl. Acad. Sci. USA 84, 8898–8902.

    Article  PubMed  CAS  Google Scholar 

  32. Park, S. H., Shalongo, W., and Stellwagen, E. (1993) Residue helix parameters obtained from dichroic analysis of peptides of defined sequence. Biochemistry 32, 7048–7053.

    Article  PubMed  CAS  Google Scholar 

  33. Marqusee, S., Robbins, V. H., and Baldwin, R. L. (1989) Unusually stable helix formation in short alanine-based peptides. Proc. Natl. Acad. Sci. USA 86, 5286–5290.

    Article  PubMed  CAS  Google Scholar 

  34. Lyu, P. C., Marky, L. A., and Kallenbach, N. R. (1989) The role of ion-pairs in α-helix stability: two new designed helical peptides. J. Am. Chem. Soc. 111, 2733–2734.

    Article  CAS  Google Scholar 

  35. Lyu, P. C., Liff, M. I., Marky, L. A., and Kallenbach, N. R. (1990) Side-chain contributions to the stability of α-helical structure in peptides. Science 250, 669–673.

    Article  PubMed  CAS  Google Scholar 

  36. Gans, P. J., Lyu, P. C., Manning, M. C., Woody, R. W., and Kallenbach N. R. (1991) The helix-coil transition in heterogeneous peptides with specific side chain interactions: Theory and comparison with circular dichroism. Biopolymers 31, 1605–1614.

    Article  PubMed  CAS  Google Scholar 

  37. Horovitz, A., Serrano, L., Avron, B., Bycroft, M., and Fersht, A. R. (1990) Strength and co-operativity of contributions of surface salt bridges to protein stability. J. Mol. Biol. 216, 1031–1044.

    Article  PubMed  CAS  Google Scholar 

  38. Merutka, G. and Stellwagen, E. (1991) Effect of amino acid ion pairs on peptide helicity. Biochemistry 30, 1591–1594.

    Article  PubMed  CAS  Google Scholar 

  39. Stellwagen, E., Park, S. H., Shalongo, W., and Jain, A. (1992) The contribution of residue ion pairs to the helical stability of a model peptide. Biopolymers 32, 1193–1200.

    Article  PubMed  CAS  Google Scholar 

  40. Huyghues-Despointes, B. M., Scholtz, J. M., and Baldwin, R. L. (1993) Helical peptides with three pairs of Asp-Arg and Glu-Arg residues in different orientations and spacings. Protein Sci. 2, 80–85.

    Article  PubMed  CAS  Google Scholar 

  41. Scholtz, J.M., Qian, H., Robbins, V. H., and Baldwin, R. L. (1993) The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide. Biochemistry 32, 9668–9676.

    Article  PubMed  CAS  Google Scholar 

  42. Huyghues-Despointes, B. M. and Baldwin, R. L. (1997) Ion-pair and charged hydrogen-bond interactions between histidine and aspartate in a peptide helix. Biochemistry 36, 1965–1970.

    Article  PubMed  CAS  Google Scholar 

  43. Huyghues-Despointes, B. M., Klingler, T. M., and Baldwin, R. L. (1995) Measuring the strength of side-chain hydrogen bonds in peptide helices: the Gln.Asp (i, i + 4) interaction. Biochemistry 34, 13267–13271.

    Article  PubMed  CAS  Google Scholar 

  44. Stapley, B. J. and Doig, A. J. (1997) Hydrogen bonding interactions between glutamine and asparagine in α-helical peptides. J. Mol. Biol. 272, 465–473.

    Article  PubMed  CAS  Google Scholar 

  45. Padmanabhan, S. and Baldwin, R. L. (1994) Helix-stabilizing interaction between tyrosine and leucine or valine when the spacing is i, i + 4. J. Mol. Biol. 241, 706–713.

    Article  PubMed  CAS  Google Scholar 

  46. Padmanabhan, S. and Baldwin, R. L. (1994) Tests for helix-stabilizing interactions between various nonpolar side chains in alanine-based peptides. Protein Sci. 3, 1992–1997.

    Article  PubMed  CAS  Google Scholar 

  47. Stapley, B. J., Rohl, A., and Doig, A. J. (1995) Addition of side chain interactions to modified Lifson-Roig helix-coil theory: application to energetics of Phenylalanine-Methionine interactions. Protein Sci. 4, 2383–2391.

    Article  PubMed  CAS  Google Scholar 

  48. Viguera, A. R. and Serrano, L. (1995) Side-chain interactions between sulfurcontaining amino acids and phenylalanine in α-helices. Biochemistry 34, 8771–8779.

    Article  PubMed  CAS  Google Scholar 

  49. Andrew, C. D., Bhattacharjee, S., Kokkoni, N., Hirst, J. D., Jones, G. R., and Doig, A. J. (2002) Stabilizing interactions between aromatic and basic side chains in α-helical peptides and proteins. Tyrosine effects on helix circular dichroism. J. Am. Chem. Soc. 124, 12706–12714.

    Article  PubMed  CAS  Google Scholar 

  50. Tsou, L. K., Tatko, C. D., and Waters, M. L. (2002) Simple cation-π interaction between a phenyl ring and a protonated amine stabilizes an α-helix in water. J. Am. Chem. Soc. 124, 14917–14921.

    Article  PubMed  CAS  Google Scholar 

  51. Andrew, C. D., Penel, S., Jones, G. R., and Doig, A. J. (2001) Stabilizing nonpolar/ polar side-chain interactions in the α-helix. Proteins 45, 449–455.

    Article  PubMed  CAS  Google Scholar 

  52. Muñoz, V. and Serrano, L. (1997) Development of the multiple sequence approximation within the AGADIR model of α-helix formation: comparison with Zimm-Bragg and Lifson-Roig formalisms. Biopolymers 41, 495–509.

    Article  PubMed  Google Scholar 

  53. Lacroix, E., Viguera, A. R., and Serrano, L. (1998) Elucidating the folding problem of α-helices: local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters. J. Mol. Biol. 284, 173–191.

    Article  PubMed  CAS  Google Scholar 

  54. Muñoz, V. and Serrano, L. (1994) Elucidating the folding problem of helical peptides using empirical parameters. Nat. Struct. Biol. 1, 399–409.

    Article  PubMed  Google Scholar 

  55. Muñoz, V. and L. Serrano, L. (1995) Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides. J. Mol. Biol. 245, 275–296.

    Article  PubMed  Google Scholar 

  56. Chakrabarti, P. (1991) Does helix dipole have any role in binding metal ions in protein structures? Arch. Biochem. Biophys. 290, 387–390.

    Article  PubMed  CAS  Google Scholar 

  57. Chakrabarti, P. (1994) An assessment of the effect of the helix dipole in protein structures. Protein Eng. 7, 471–474.

    Article  PubMed  CAS  Google Scholar 

  58. Edmonds, D. T. (1985) The alpha-helix dipole in membranes: a new gating mechanism for ion channels. Eur. Biophys. J. 13, 31–35.

    Article  PubMed  CAS  Google Scholar 

  59. Fairman, R., Shoemaker, K. R., York, E. J., Stewart, J. M., and Baldwin, R. L. (1989) Further studies of the helix dipole model: effects of a free alpha-NH3+ or alpha-COO-group on helix stability. Proteins 5, 1–7.

    Article  PubMed  CAS  Google Scholar 

  60. Gilson, M. K. and Honig, B. (1989) Destabilization of an alpha-helix-bundle protein by helix dipoles. Proc. Natl. Acad. Sci. USA 86, 1524–1528.

    Article  PubMed  CAS  Google Scholar 

  61. Hol, W. G. J. (1985) Effects of the [alpha]-helix dipole upon the functioning and structure of proteins and peptides. Adv. Biophys. 19, 133–165.

    Article  PubMed  CAS  Google Scholar 

  62. Hol, W. G. J., van Duijnen, P. T., and Berendsen, H. J. C. (1978) The α-helix dipole and the properties of proteins. Nature, 273, 443–446.

    Article  PubMed  CAS  Google Scholar 

  63. Lockhart, D. J. and Kim, P. S. (1993) Electrostatic screening of charge and dipole interactions with the helix backbone. Science 260, 198–202.

    Article  PubMed  CAS  Google Scholar 

  64. Miranda, J. L. (2003) Position-dependent interactions between cysteine residues and the helix dipole. Protein Sci. 12, 73–81.

    Article  PubMed  CAS  Google Scholar 

  65. Nicholson, H., Anderson, D. E., Dao-pin, S., and Matthews, B. W. (1991) Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme. Biochemistry 30, 9816–9828.

    Article  PubMed  CAS  Google Scholar 

  66. Sali, D., Bycroft, M., and Fersht, A. R. (1988) Stabilization of protein structure by interaction of alpha-helix dipole with a charged side chain. Nature 335, 740–743.

    Article  PubMed  CAS  Google Scholar 

  67. Sheridan, R. P. and Allen, L. C. (1980) The electrostatic potential of the alpha helix (electrostatic potential/[alpha]-helix/secondary structure/helix dipole). Biophys. Chem. 11, 133–136.

    Article  PubMed  CAS  Google Scholar 

  68. Szilak, L., Moitra, J., and Vinson, C. (1997) Design of a leucine zipper coiled coil stabilized 1.4kcal/mol by phosphorylation of a serine in the e position. Protein Sci. 6, 1273–1283.

    Article  PubMed  CAS  Google Scholar 

  69. Szilak, L., Moitra, J., Krylov, D., and Vinson, C. (1997) Phosphorylation destabilizes alpha-helices. Nat. Struct. Biol. 4, 112–114.

    Article  PubMed  CAS  Google Scholar 

  70. Liehr, S. and Chenault, H. K. (1999) A comparison of the α-helix forming propensities and hydrogen bonding properties of serine phosphate and a-amino-?-phoshphonobutyric acid. Bioorg. Med. Chem. Lett. 9, 2759–2762.

    Article  PubMed  CAS  Google Scholar 

  71. Andrew, C. D., Warwicker, J., Jones, G. R., and Doig, A. J. (2002) Effect of phosphorylation on α-helix stability as a function of position. Biochemistry 41, 1897–1905.

    Article  PubMed  CAS  Google Scholar 

  72. Smart, J. L. and McCammon, J. A. (1999) Phosphorylation stabilizes the N-termini of α-helices. Biopolymers 49, 225–233.

    Article  PubMed  CAS  Google Scholar 

  73. Jackson, D. Y., King, K. S., Chmielewski, J., Singh, S., and Schultz, P.G. (1991) General approach to the synthesis of short α-helical peptides. J. Am. Chem. Soc. 113, 9391–9392.

    Article  CAS  Google Scholar 

  74. Berezhkovskiy, L. M., Pham, S., Reich, E. P., and Deshpande, S. (1999) Synthesis and kinetics of cyclization of MHC class II derived cyclic peptide vaccine for diabetes. J. Pept. Res. 54, 112–119.

    Article  PubMed  CAS  Google Scholar 

  75. Jernigan, R., Raghunathan, G., and Bahar, I. (1994) Characterisation of interactions and metal-ion binding-sites in proteins. Curr. Opin. Struct. Biol. 4, 256–263.

    Article  CAS  Google Scholar 

  76. Alberts, I. L., Nadassy, K., and Wodak, S. J. (1998) Analysis of zinc binding sites in protein crystal structures. Protein Sci. 7, 1700–1716.

    Article  PubMed  CAS  Google Scholar 

  77. Ghadiri, M. R. and Choi, C. (1990) Secondary structure nucleation in peptides—transition-metal ion stabilized alpha-helices. J. Am. Chem. Soc. 112, 1630–1632.

    Article  CAS  Google Scholar 

  78. Kise, K. J. and Bowler, B. E. (2002) Induction of helical structure in a heptapeptide with a metal cross-link: modification of the Lifson-Roig Helix-coil theory to account for covalent cross-links. Biochemistry 41, 15826–15837.

    Article  PubMed  CAS  Google Scholar 

  79. Ruan, F., Chen, Y., and Hopkins, P. B. (1990) Metal ion enhanced helicity in synthetic peptides containing unnatural, metal-ligating residues. J. Am. Chem. Soc. 112, 9403–9404.

    Article  CAS  Google Scholar 

  80. Cline, D. J., Thorpe, C., and Scheider, J. P. (2003) Effects of As(III) Binding on r-helical structure. J. Am. Chem. Soc. 125, 2923–2929.

    Article  PubMed  CAS  Google Scholar 

  81. Beyer, R.L., Hoang, H. N., Appleton, T. G., and Fairlie, D. P. (2004) Metal clips induce folding of a short unstructured peptide into an α-helix via turn conformations in water. Kinetic versus thermodynamic products. J. Am. Chem. Soc. 126, 15096–15105.

    Article  PubMed  CAS  Google Scholar 

  82. Kemp, D. S., Boyd, J. G., and Muendel, C. C. (1991) The helical s-constant for Alanine in water derived from template-nucleated helices. Nature 352, 451–454.

    Article  PubMed  CAS  Google Scholar 

  83. Kemp, D. S., Allen, T. J., and Oslick, S. L. (1995) The energetics of helix formation by short templated peptides in aqueous solution. 1. Characterization of the reporting helical template Ac-HE1(1). J. Am. Chem. Soc. 117, 6641–6657.

    Article  CAS  Google Scholar 

  84. Groebke, K., Renold, P., Tsang, K. Y., Allen, T. J., McClure, K. F., and Kemp, D. S. (1996) Template-nucleated alanine-lysine helices are stabilized by positiondependent interactions between the lysine side chain and the helix barrel. Proc. Natl. Acad. Sci. USA 93, 4025–4029.

    Article  PubMed  CAS  Google Scholar 

  85. Kemp, D. S., Allen, T. J., Oslick, S. L., and Boyd, J. G., (1996) The structure and energetics of helix formation by short templated peptides in aqueous solution. 2. Characterization of the helical structure of Ac-Hel(1)-Ala(6)-OH. J. Am. Chem. Soc. 118, 4240–4248.

    Article  CAS  Google Scholar 

  86. Kemp, D. S., Oslick, S. L., and Allen, T. J. (1996) The structure and energetics of helix formation by short templated peptides in aqueous solution. 3. Calculation of the helical propagation constant s from the template stability constants t/c for Ac-Hel1-Alan-OH, n = 1–6. J. Am. Chem. Soc. 118, 4249–4255.

    Article  CAS  Google Scholar 

  87. Austin, R. E., Maplestone, R. A., Sefler, A. M., Liu, K., et al. (1997) Template for stabilization of a peptide alpha-helix: Synthesis and evaluation of conformational effects by circular dichroism and NMR. J. Am. Chem. Soc. 119, 6461–6472.

    Article  CAS  Google Scholar 

  88. Arrhenius, T. and Sattherthwait, A. C. (1989) Peptides: Chemistry, Structure and Biology: Proceedings of the 11th American Peptide Symposium, July, La Jolla, CA.

    Google Scholar 

  89. Muller, K., Obrecht, D., Knierzinger, A., et al. (1993) Perspectives in Medicinal Chemistry. pp. 513–531.

    Google Scholar 

  90. Gani, D., Lewis, A., Rutherford, T., et al. (1998) Design, synthesis, structure and properties of an alpha-helix cap template derived from N-[(2S)-2-chloropropionyl]-(2S)-Pro-(2R)-Ala-(2S,4S)-4-thioPro-OMe which initiates alphahelical structures. Tetrahedron 54, 15793–15819.

    Article  CAS  Google Scholar 

  91. Luo, P. and Baldwin, L. (1997) Mechanism of helix induction by trifluoroethanol: A framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry 36, 8413–8421.

    Article  PubMed  CAS  Google Scholar 

  92. Brandts, J. R. and Kaplan, K. J. (1973) Derivative spectroscopy applied to tyrosyl chromophores. Studies on ribonuclease, lima bean inhibitor, and pancreatic trypsin inhibitor. Biochemistry 10, 470–476.

    Google Scholar 

  93. Edelhoch, H. (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954.

    Article  PubMed  CAS  Google Scholar 

  94. Woody, R. W., Dunker, A. K., and Fasman, G. D. (1996) Theory of circular dichroism of proteins, in Circular Dichroism and the Conformational Analysis of Biomolecules (Fasman G. D., ed.), Plenum Press, New York, pp. 109–157.

    Google Scholar 

  95. Bayley, P. M., Nielsen, E. B., and Schellman, J. A. (1969) The rotatory properties of molecules containing two peptide groups. J. Phys. Chem. 73, 228–243.

    Article  PubMed  CAS  Google Scholar 

  96. Spera, S. and Bax, A. (1991) Empirical correlation between protein backbone conformation and Cα and Cβ 13C Nuclear magnetic resonance chemical shifts. J. Am. Chem. Soc. 113, 5490–5492.

    Article  CAS  Google Scholar 

  97. Shalongo, W., Dugad, L., and Stellwagen, E. (1994) Analysis of thermal transitions of a model helical peptide using 13C NMR. J. Am. Chem. Soc. 116, 2500–2507.

    Article  CAS  Google Scholar 

  98. Shalongo, W., Dugad, L., and Stellwagen, E. (1994) Distribution of helicity within the model peptide Acetyl(AAQAA)3amide. J. Am. Chem. Soc. 116, 8288–8293.

    Article  CAS  Google Scholar 

  99. Park, S.-H., Shalongo, W., and Stellwagen, E. (1998) Analysis of N-terminal Capping using carbonyl-carbon chemical shift measurements. Proteins Struct. Funct. Genet. 33, 167–176.

    Article  PubMed  CAS  Google Scholar 

  100. Venyaminov, S.-Y. and Kalnin, N. N. (1990) Quantitative IR Spectrophotometry of peptide compounds in water (H2O) solutions. 2. Amide absorption-bands of polypeptides and fibrous proteins in α-coil, β-coil, and random coil conformations. Biopolymers 30, 1243–1257.

    Article  PubMed  CAS  Google Scholar 

  101. Blanch, E. W., Kasarda, D. D., Hecht, L., Nielsen, K., and Barron, L. D. (2003) New insight into the solution structures of wheat gluten proteins from Raman optical activity. Biochemistry 42, 5665–5673.

    Article  PubMed  CAS  Google Scholar 

  102. Blanch, E. W., Morozova-Roche, L. A., Cochran, D. A. E., Doig, A. J., Hecht, L., and Barron, L. D. (2000) Is polyproline II helix the killer conformation? A Raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme. J. Mol. Biol. 301, 553–563.

    Article  PubMed  CAS  Google Scholar 

  103. Barron, L. D., Hecht, L., Blanch, E. W., and Bell, A. F. (2000) Solution structure and dynamics of biomolecules from Raman optical activity. Prog. Biophys. Mol. Biol. 73, 1–49.

    Article  PubMed  CAS  Google Scholar 

  104. Pace, C. N. and Scholtz, J. M. (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys. J. 75, 422–427.

    Article  PubMed  CAS  Google Scholar 

  105. Petukhov, M., Muñoz, V., Yumoto, N., Yoshikawa, S., and Serrano, L. (1998) Position dependence of non-polar amino acid intrinsic helical propensities. J. Mol. Biol. 278, 279–289.

    Article  PubMed  CAS  Google Scholar 

  106. Petukhov, M., Uegaki, K., Yumoto, N., Yoshikawa, S., and Serrano, L. (1999) Position dependence of amino acid intrinsic helical propensities II: Non-charged polar residues: Ser, Thr, Asn, and Gln. Protein Sci. 8, 2144–2150.

    Article  PubMed  CAS  Google Scholar 

  107. Petukhov, M., et al. (2002) Amino acid intrinsic α-helical propensities III: Positional dependence at several positions of C-terminus. Protein Sci. 11, 766–777.

    Article  PubMed  CAS  Google Scholar 

  108. Ermolenko, D. N., Richardson, J. M., and Makhatadze, G. I. (2003) Noncharged amino acid residues at the solvent-exposed positions in the middle and at the C terminus of the α-helix have the same helical propensity. Protein Sci. 12, 1169–1176.

    Article  PubMed  CAS  Google Scholar 

  109. Thomas, S. T., Loladze, V. V., and Makhatadze, G. I. (2001) Hydration of the peptide backbone largely defines the thermodynamic propensity scale of residues at the C’ position of the C-capping box of α-helices. Proc. Nat. Acad. Sci. USA 98, 10670–10675.

    Article  PubMed  CAS  Google Scholar 

  110. Shi, Z., Olson, C. A., Bell, A. J., Jr., and Kallenbach, N. R. (2002) Non-classical helix-stabilizing interactions: C-H...O H-bonding between Phe and Glu side chains in α-helical peptides. Biophys. Chem. 101–102, 267–279.

    Article  PubMed  Google Scholar 

  111. Smith, J. S. and Scholtz, J. M. (1998) Energetics of polar side-chain interactions in helical peptides: Salt effects on ion pairs and hydrogen bonds. Biochemistry 37, 33–40.

    Article  PubMed  CAS  Google Scholar 

  112. Luo, R., David, L., Hung, H., Devaney, J., and Gilson, M. K., Strength of solvent-exposed salt bridges. (1999) J. Phys. Chem. B 103, 727–736.

    Article  CAS  Google Scholar 

  113. Marqusee, S. and Sauer, R. T. (1994) Contributions of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in λ repressor. Protein Sci. 3, 2217–2225.

    Article  PubMed  CAS  Google Scholar 

  114. Luo, P. and Baldwin, R. L. (1999) Interaction between water and polar groups of the helix backbone: An important determinant of helix propensities. Proc. Nat. Acad. Sci. USA 96, 4930–4935.

    Article  PubMed  CAS  Google Scholar 

  115. Shalongo, W. and Stellwagen, E. (1995) Incorporation of pairwise interactions into the Lifson-Roig model for helix prediction. Protein Sci. 4, 1161–1166.

    Article  PubMed  CAS  Google Scholar 

  116. Fernández-Recio, J., Vazquez, A., Civera, C., Sevilla, P., and Sancho, J. (1997) The tryptophan/histidine interaction in α-helices. J. Mol. Biol. 267, 184–197.

    Article  PubMed  Google Scholar 

  117. Shi, Z., Olson, C. A., Bell, A. J. Jr., and Kallenbach, N. R. (2001) Stabilization of α-helix structure by polar side-chain interactions: complex salt bridges, cation π interactions and C-H...O-H bonds. Biopolymers 60, 366–380.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Errington, N., Iqbalsyah, T., Doig, A.J. (2006). Structure and Stability of the α-Helix. In: Guerois, R., de la Paz, M.L. (eds) Protein Design. Methods in Molecular Biology, vol 340. Humana Press. https://doi.org/10.1385/1-59745-116-9:3

Download citation

  • DOI: https://doi.org/10.1385/1-59745-116-9:3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-585-9

  • Online ISBN: 978-1-59745-116-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics