Skip to main content

Fabrication of Polymer Microfluidic Systems by Hot Embossing and Laser Ablation

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 339))

Abstract

Fabrication of microfluidic channels in common commercially available thermoplastic materials can be easily accomplished using hot embossing or ultraviolet (UV) laser ablation. Hot embossing involves replication of a microfluidic network in a polymer substrate from a stamp (or template) fabricated in silicon or metal. UV laser ablation is performed by either exposing the polymer substrate through a mask or by using a laser direct-write process. The resulting polymer microfluidic channels are most often sealed with another polymer piece using thermal bonding or solvent bonding to complete the fabrication procedure. Unlike their silicon and glass counterparts, polymer microfluidic systems can be fabricated by these methods in less than 1 h, making the materials attractive for both research prototyping and commercialization.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Martynova L., Locascio L. E., Gaitan M., Kramer G. W., Christensen R. G., and MacCrehan W. A. (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal. Chem. 69, 4783–4789.

    Article  CAS  Google Scholar 

  2. Roberts M. A., Rossier J. S., Bercier P., and Girault H. (1997) UV laser machined polymer substrates for the development of microdiagnostic systems. Anal. Chem. 69, 2035–2042.

    Article  CAS  Google Scholar 

  3. Soper S. A., Ford S. M., Qi S., McCarley R. L., Kelly K., and Murphy M. C. (2000) Polymeric microelectromechanical systems. Anal. Chem. 72, 642A–651A.

    Article  Google Scholar 

  4. McCormick R. M., Nelson R. J., AlonsoAmigo M. G., Benvegnu J., and Hooper H. H. (1997) Microchannel electrophoretic separations of DNA in injectionmolded plastic substrates. Anal. Chem. 69, 2626–2630.

    Article  CAS  Google Scholar 

  5. Duffy D. C., McDonald J. C., Schueller O. J. A., and Whitesides G. M. (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984.

    Article  CAS  Google Scholar 

  6. Pugmire D. L., Waddell E. A., Haasch R., Tarlov M. J., and Locascio L. E. (2002) Surface characterization of laser-ablated polymers used for microfluidics. Anal. Chem. 74, 871–878.

    Article  CAS  Google Scholar 

  7. Tabata O., Asahi R., Funabashi H., Shimaoka, K., and Sugiyama S. (1992) Anisoptropic etching of silicon in TMAH solutions. Sens. Actuators A Phys. 34, 51–57.

    Article  Google Scholar 

  8. Klassen E. H., Reay R. J., Storment C., et al. (1996) Micromachined Thermally Isolated Circuits. Proc. Solid-State Sensor and Actuator Workshop, 127–131.

    Google Scholar 

  9. Seidel H. (1987) The Mechanism of Anisotropic Silicon Etching and its Relevance for Micromachining. Proc. Transducers 87, 120–125.

    Google Scholar 

  10. Xu J. D., Locascio L., Gaitan M., and Lee C. S. (2000) Room-temperature imprinting method for plastic microchannel fabrication. Anal. Chem. 72, 1930–1933.

    Article  CAS  Google Scholar 

  11. Johnson T. J., Waddell E. A., Kramer G. W., and Locascio L. E. (2001) Chemical mapping of hot embossed and UV laser ablated microchannels in poly(methyl methacrylate) using carboxylate specific fluorescent probes. Appl. Surf. Sci. 181, 149–159.

    Article  CAS  Google Scholar 

  12. Henry A. C., Waddell E. A., Shreiner R., and Locascio L. E. (2002) Control of electroosmotic flow in laser-ablated and chemically modified hot imprinted poly(ethylene terephthalate glycol) microchannels. Electrophoresis 23, 791–798.

    Article  CAS  Google Scholar 

  13. Becker H. and Heim U. (2000) Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuators A Phys. 83, 130–135.

    Article  Google Scholar 

  14. Ueno K., Kitagawa F., Kim H. B., et al. (2000) Fabrication and characteristic responses of integrated microelectrodes in polymer channel chip. Chem. Letters 8, 858, 859.

    Article  Google Scholar 

  15. Uchiyama K., Xu W., Yamamoto M., Shimosaka T., and Hobo T. (1999) Development of imprinted polymer microchannel capillary chip for capillary electrochromatography. Anal. Sciences 15, 825, 826.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Locascio, L.E., Ross, D.J., Howell, P.B., Gaitan, M. (2006). Fabrication of Polymer Microfluidic Systems by Hot Embossing and Laser Ablation. In: Henry, C.S. (eds) Microchip Capillary Electrophoresis. Methods in Molecular Biology, vol 339. Humana Press. https://doi.org/10.1385/1-59745-076-6:37

Download citation

  • DOI: https://doi.org/10.1385/1-59745-076-6:37

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-293-3

  • Online ISBN: 978-1-59745-076-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics