Skip to main content

Gene-Specific and Mitochondrial Repair of Oxidative DNA Damage

  • Protocol
DNA Repair Protocols

Abstract

The Southern blot gene-specific DNA damage and repair assay is a robust and flexible method for quantifying many kinds of induced damage and repair with high reproducibility. Specific nicking and loss of a restricted DNA fragment at the site of induced damage is visualized by Southern blot and quantified against a control; since the blot is gene specific, only the damage of interest is measured. Here we show how the assay may be adapted to assess mitochondrial DNA (mtDNA) damage. In the mitochondrion, 8-oxoguanine is a significant oxidative lesion; in the laboratory, photoactivated methylene blue may be used to introduce this lesion into cells. Other lesions may also be studied by using different DNA damaging agents. We find that damage induction by methylene blue is consistently far greater in the mitochondrion than the nucleus. Thus advantageously, mitochondrial 8-oxoguanine repair may be studied without mtDNA isolation or preparation, which are processes known to induce DNA damage and skew measurements. This chapter gives detailed instructions for using methylene blue and the gene-specific repair assay to accurately measure mitochondrial oxidative damage and repair rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown, M. D. and Wallace, D. C. (1994) Molecular basis of mitochondrial DNA disease. J. Bioenerg. Biomembr. 26, 273–289.

    Article  PubMed  CAS  Google Scholar 

  2. Kumagai, Y., Koide, S., Taguchi, K., et al. (2002) Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem. Res. Toxicol. 15, 483–489.

    Article  PubMed  CAS  Google Scholar 

  3. Wallace, D. C. (2001) A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found. Symp. 235, 247–263.

    Article  PubMed  CAS  Google Scholar 

  4. Souza-Pinto, N. C. and Bohr, V. A. (2002) The mitochondrial theory of aging: involvement of mitochondrial DNA damage and repair. Int. Rev. Neurobiol. 53, 519–534.

    Article  PubMed  Google Scholar 

  5. Hileman, E. A., Achanta, G., and Huang, P. (2001) Superoxide dismutase: an emerging target for cancer therapeutics. Expert. Opin. Ther. Targets. 5, 697–710.

    Article  PubMed  CAS  Google Scholar 

  6. Wallace, D. C. (1999) Mitochondrial diseases in man and mouse. Science 283, 1482–1488.

    Article  PubMed  CAS  Google Scholar 

  7. Clayton, D. A., Doda, J. N., and Friedberg, E. C. (1975) Absence of a pyrimidine dimer repair mechanism for mitochondrial DNA in mouse and human cells. Basic Life Sci. 5B, 589–591.

    PubMed  CAS  Google Scholar 

  8. Anderson, C. T. and Friedberg, E. C. (1980) The presence of nuclear and mitochondrial uracil-DNA glycosylase in extracts of human KB cells. Nucleic Acids Res. 8, 875–888.

    Article  PubMed  CAS  Google Scholar 

  9. Croteau, D. L., ap Rhys, C. M., Hudson, E. K., Dianov, G. L., Hansford, R. G., and Bohr, V. A. (1997) An oxidative damage-specific endonuclease from rat liver mitochondria. J. Biol. Chem. 272, 27,338–27,344.

    Article  PubMed  CAS  Google Scholar 

  10. Thyagarajan, B., Padua, R. A., and Campbell, C. (1996) Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 271, 7,536–27,543.

    Google Scholar 

  11. Driggers, W. J., Grishko, V. I., LeDoux, S. P., and Wilson, G. L. (1996) Defective repair of oxidative damage in the mitochondrial DNA of a xeroderma pigmentosum group A cell line. Cancer Res. 56, 1262–1266.

    PubMed  CAS  Google Scholar 

  12. Shen, C. C., Wertelecki, W., Driggers, W. J., LeDoux, S. P., and Wilson, G. L. (1995) Repair of mitochondrial DNA damage induced by bleomycin in human cells. Mutat. Res. 337, 19–23.

    PubMed  CAS  Google Scholar 

  13. Driggers, W. J., LeDoux, S. P., and Wilson, G. L. (1993) Repair of oxidative damage within the mitochondrial DNA of RINr 38 cells. J. Biol. Chem. 268, 22,042–22,045.

    PubMed  CAS  Google Scholar 

  14. LeDoux, S. P., Wilson, G. L., Beecham, E. J., Stevnsner, T., Wassermann, K., and Bohr, V. A. (1992) Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis 13, 1967–1973.

    Article  PubMed  CAS  Google Scholar 

  15. Snyderwine, E. G. and Bohr, V. A. (1992) Gene-and strand-specific damage and repair in Chinese hamster ovary cells treated with 4-nitroquinoline 1-oxide. Cancer Res. 52, 4183–4189.

    PubMed  CAS  Google Scholar 

  16. Pettepher, C. C., LeDoux, S. P., Bohr, V. A., and Wilson, G. L. (1991) Repair of alkali-labile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J. Biol. Chem. 266, 3113–3117.

    PubMed  CAS  Google Scholar 

  17. Tomkinson, A. E., Bonk, R. T., Kim, J., Bartfeld, N., and Linn, S. (1990) Mammalian mitochondrial endonuclease activities specific for ultraviolet-irradiated DNA. Nucleic Acids Res. 18, 929–935.

    Article  PubMed  CAS  Google Scholar 

  18. Domena, J. D., Timmer, R. T., Dicharry, S. A., and Mosbaugh, D. W. (1988) Purification and properties of mitochondrial uracil-DNA glycosylase from rat liver. Biochemistry 27, 6742–6751.

    Article  PubMed  CAS  Google Scholar 

  19. Tomkinson, A. E., Bonk, R. T., and Linn, S. (1988) Mitochondrial endonuclease activities specific for apurinic/apyrimidinic sites in DNA from mouse cells. J. Biol. Chem. 263, 12,532–12,537.

    PubMed  CAS  Google Scholar 

  20. Satoh, M. S., Huh, N., Rajewsky, M. F., and Kuroki, T. (1988) Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to Nethyl-N-nitrosourea in vivo. J. Biol. Chem. 263, 6854–6856.

    PubMed  CAS  Google Scholar 

  21. Myers, K. A., Saffhill, R., and O’Connor, P. J. ((1988) RRepair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 9, 285–292.

    Article  PubMed  CAS  Google Scholar 

  22. Richter, C. (1995) Oxidative damage to mitochondrial DNA and its relationship to ageing. Int. J. Biochem. Cell Biol. 27, 647–653.

    Article  PubMed  CAS  Google Scholar 

  23. Richter, C. (1992) Reactive oxygen and DNA damage in mitochondria. Mutat. Res. 275, 249–255.

    PubMed  CAS  Google Scholar 

  24. Nishioka, K., Ohtsubo, T., Oda, H., et al. (1999) Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol. Biol. Cell 10, 1637–1652.

    PubMed  CAS  Google Scholar 

  25. Nilsen, H., Otterlei, M., Haug, T., et al. (1997) Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res. 25, 750–755.

    Article  PubMed  CAS  Google Scholar 

  26. Dzierzbicki, P., Koprowski, P., Fikus, M. U., Malc, E., and Ciesla, Z. (2004) Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway. DNA Repair 3, 403–411.

    Article  PubMed  CAS  Google Scholar 

  27. Ohtsubo, T., Nishioka, K., Imaiso, Y., et al. (2000) Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detec tion of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res. 28, 1355–1364.

    Article  PubMed  CAS  Google Scholar 

  28. Shinmura, K., Yamaguchi, S., Saitoh, T., et al. (2000) Adenine excisional repair function of MYH protein on the adenine:8-hydroxyguanine base pair in doublestranded DNA. Nucleic Acids Res. 28, 4912–4918.

    Article  PubMed  CAS  Google Scholar 

  29. LeDoux, S. P. and Wilson, G. L. (2001) Base excision repair of mitochondrial DNA damage in mammalian cells. Prog. Nucleic Acid Res. Mol. Biol. 68, 273–284.

    Article  PubMed  CAS  Google Scholar 

  30. Bohr, V. A., Stevnsner, T., and Souza-Pinto, N. C. (2002) Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene 286, 127–134.

    Article  PubMed  CAS  Google Scholar 

  31. Boiteux, S., Gajewski, E., Laval, J., and Dizdaroglu, M. (1992) Substrate specificity of the Escherichia coli Fpg protein (formamidopyrimidine-DNA glycosylase): excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Biochemistry 31, 106–110.

    Article  PubMed  CAS  Google Scholar 

  32. Schneider, J. E., Price, S., Maidt, L., Gutteridge, J. M., and Floyd, R. A. (1990) Methylene blue plus light mediates 8-hydroxy 2′-deoxyguanosine formation in DNA preferentially over strand breakage. Nucleic Acids Res. 18, 631–635.

    Article  PubMed  CAS  Google Scholar 

  33. Ravanat, J. L. and Cadet, J. (1995) Reaction of singlet oxygen with 2′-deoxyguanosine and DNA. Isolation and characterization of the main oxidation products. Chem. Res. Toxicol. 8, 379–388.

    Article  PubMed  CAS  Google Scholar 

  34. ESCODD (2003) Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic. Biol. Med. 34, 1089–1099.

    Article  Google Scholar 

  35. ESCODD (2002) Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: an approach to consensus. Carcinogenesis 23, 2129–2133.

    Article  Google Scholar 

  36. Beckman, K. B. and Ames, B. N. (1999) Endogenous oxidative damage of mtDNA. Mutat. Res. 424, 51–58.

    PubMed  CAS  Google Scholar 

  37. Beckman, K. B. and Ames, B. N. (1996) Detection and quantification of oxidative adducts of mitochondrial DNA. Methods Enzymol. 264, 442–453.

    Article  PubMed  CAS  Google Scholar 

  38. Bohr, V. A. (1991) Gene specific DNA repair. Carcinogenesis 12, 1983–1992.

    Article  PubMed  CAS  Google Scholar 

  39. Anson, R. M., Hudson, E., and Bohr, V. A. (2000) Mitochondrial endogenous oxidative damage has been overestimated. FASEB J. 14, 355–360.

    PubMed  CAS  Google Scholar 

  40. Rusyn, I., Asakura, S., Pachkowski, B., et al. (2004) Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemicalinduced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxisome proliferators. Cancer Res. 64, 1050–1057.

    Article  PubMed  CAS  Google Scholar 

  41. Bohr, V. A. and Anson, R. M. (1995) DNA damage, mutation and fine structure DNA repair in aging. Mutat. Res. 338, 25–34.

    PubMed  CAS  Google Scholar 

  42. Bohr, V. A. (1994) Gene-specific damage and repair of DNA adducts and crosslinks, in IARC Sci., Publ. No. 125 (Hemminki, K., Dipple, A., Shuker, D. E. G., Kadlubar, F. F. Segerback, D., and Bartsch, H., eds.) International Agency for Research on Cancer, Lyon, France, pp. 361–369.

    Google Scholar 

  43. Sass, M. D., Caruso, C. J., and Axelrod, D. R. (1967) Accumulation of methylene blue by metabolizing erythrocytes. J. Lab. Clin. Med. 69, 447–455.

    PubMed  CAS  Google Scholar 

  44. Anson, R. M., Croteau, D. L., Stierum, R. H., Filburn, C., Parsell, R., and Bohr, V. A. (1998) Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA. Nucleic Acids Res. 26, 662–668.

    Article  PubMed  CAS  Google Scholar 

  45. Tchou, J., Bodepudi, V., Shibutani, S., et al. (1994) Substrate specificity of Fpg protein. Recognition and cleavage of oxidatively damaged DNA. J. Biol. Chem. 269, 15,318–15,324.

    CAS  Google Scholar 

  46. Tchou, J., Kasai, H., Shibutani, S., Chung, M. H., Laval, J., Grollman, A. P., and Nishimura, S. (1991) 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc. Natl. Acad. Sci. USA 88, 4690–4694.

    Article  PubMed  CAS  Google Scholar 

  47. Taffe, B. G., Larminat, F., Laval, J., Croteau, D. L., Anson, R. M., and Bohr, V. A. (1996) Gene-specific nuclear and mitochondrial repair of formamidopyrimidine DNA glycosylase-sensitive sites in Chinese hamster ovary cells. Mutat. Res. 364, 183–192.

    PubMed  CAS  Google Scholar 

  48. Robinson, J. W. (ed.) (1974) CRC Handbook of Spectroscopy, vol. II. CRC, Cleveland, OH.

    Google Scholar 

  49. Higuchi, Y. and Linn, S. (1995) Purification of all forms of HeLa cell mitochondrial DNA and assessment of damage to it caused by hydrogen peroxide treatment of mitochondria or cells. J. Biol. Chem. 270, 7950–7956.

    Article  Google Scholar 

  50. Cristofalo, V. J. (1976) Thymidine labelling index as a criterion of aging in vitro. Gerontology 22, 9–27.

    Article  PubMed  CAS  Google Scholar 

  51. Cristofalo, V. J. and Sharf, B. B. (1973) Cellular senescence and DNA synthesis. Thymidine incorporation as a measure of population age in human diploid cells. Exp. Cell Res. 76, 419–427.

    Article  PubMed  CAS  Google Scholar 

  52. Anderson, S., Bankier, A. T., Barrell, B. G., et al. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457–465.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Anson, R.M., Mason, P.A., Bohr, V.A. (2006). Gene-Specific and Mitochondrial Repair of Oxidative DNA Damage. In: Henderson, D.S. (eds) DNA Repair Protocols. Methods in Molecular Biology™, vol 314. Humana Press. https://doi.org/10.1385/1-59259-973-7:155

Download citation

  • DOI: https://doi.org/10.1385/1-59259-973-7:155

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-513-2

  • Online ISBN: 978-1-59259-973-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics