Skip to main content

Mast Cells in Allergy and Autoimmunity

Implications for Adaptive Immunity

  • Protocol
Book cover Mast Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 315))

  • 1394 Accesses

Abstract

As in the fashion industry, trends in a particular area of scientific investigation often are fleeting but then return with renewed and enthusiastic interest. Studies of mast cell biology are good examples of this. Although dogma once relegated mast cells almost exclusively to roles in pathological inflammation associated with allergic disease, these cells are emerging as important players in a number of other physiological processes. Consequently, they are quickly becoming the newest “trendy” cell, both within and outside the field of immunology. As sources of a large array of pro- and anti-inflammatory mediators, mast cells also express cell surface molecules with defined functions in lymphocyte activation and trafficking. Here, we provide an overview of the traditional and newly appreciated contributions of mast cells to both innate and adaptive immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galli, S. J. and Lantz, C. S. (1999) Allergy, in Fundamental Immunology, 4th ed. (Paul, W. E., ed.), Lippincott-Raven Press, Philadelphia. pp. 1127–1174.

    Google Scholar 

  2. Taurog, J. D., Mendoza, G. R., Hook, W. A., Siraganian, R. P., and Metzger, H. (1977) Noncytotoxic IgE-mediated release of histamine and serotonin from murine mastocytoma cells. J. Immunol. 119, 1757–1761.

    CAS  PubMed  Google Scholar 

  3. Barsumian, E. L., McGivney, A., Basciano, L. K., and Siraganian, R. P. (1985) Establishment of four mouse mastocytoma cell lines. Cell Immunol. 90, 131–141.

    Article  CAS  PubMed  Google Scholar 

  4. Siraganian, R. P. (2003) Mast cell signal transduction from the high-affinity IgE receptor. Curr. Opin. Immunol. 15, 639–646.

    Article  CAS  PubMed  Google Scholar 

  5. Pierce, J. H., Di Fiore, P. P., Aaronson, S. A., et al. (1985) Neoplastic transformation of mast cells by Abelson-MuLV: abrogation of IL-3 dependence by a nonautocrine mechanism. Cell 41, 685–693.

    Article  CAS  PubMed  Google Scholar 

  6. Keller, G., Kennedy, M., Papayannopoulou, T., and Wiles, M. V. (1993) Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell Biol. 13, 473–486.

    CAS  PubMed  Google Scholar 

  7. Ishizaka, T., Adachi, T., Chang, T. H., and Ishizaka, K. (1977) Development of mast cells in vitro. II. Biologic function of cultured mast cells. J. Immunol. 118, 211–217.

    CAS  PubMed  Google Scholar 

  8. Valent, P., Sillaber, C., and Bettelheim, P. (1991) The growth and differentiation of mast cells. Prog. Growth Factor Res. 3, 27–41.

    Article  CAS  PubMed  Google Scholar 

  9. Denburg, J. A. (1990) Cytokine-induced human basophil/mast cell growth and differentiation in vitro. Springer Semin. Immunopathol. 12, 401–414.

    Article  CAS  PubMed  Google Scholar 

  10. Iemura, A., Tsai, M., Ando, A., Wershil, B. K., and Galli, S. J. (1994) The c-kit ligand, stem cell factor, promotes mast cell survival by suppressing apoptosis. Am. J. Pathol. 144, 321–328.

    CAS  PubMed  Google Scholar 

  11. Nakano, T., Sonoda, T., Hayashi, C., et al. (1985) Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/W v mice. J. Exp. Med. 162, 1025–1043.

    Article  CAS  PubMed  Google Scholar 

  12. Galli, S. J. and Kitamura, Y. (1987) Genetically mast-cell-deficient W/Wv and Sl/Sld mice: their value for the analysis of the roles of mast cells in biologic responses in vivo. Am. J. Pathol. 127, 191–198.

    CAS  PubMed  Google Scholar 

  13. Galli, S. J., Tsai, M., Gordon, J. R., Geissler, E. N., and Wershil, B. K. (1992) Analyzing mast cell development and function using mice carrying mutations at W/c-kit or Sl/MGF (SCF) loci. Ann. N. Y. Acad. Sci. 664, 69–88.

    Article  CAS  PubMed  Google Scholar 

  14. Nocka, K., Tan, J. C., Chiu, E., et al. (1990) Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W 37, W v, W 41 and W. EMBO J. 9, 1805–1813.

    CAS  PubMed  Google Scholar 

  15. Kitamura, Y., Go, S., and Hatanaka, K. (1978) Decrease of mast cells in W/W v mice and their increase by bone marrow transplantation. Blood 52, 447–452.

    CAS  PubMed  Google Scholar 

  16. Duttlinger, R., Manova, K., Berrozpe, G., et al. (1995) The Wsh and Ph mutations affect the c-kit expression profile: c-kit misexpression in embryogenesis impairs melanogenesis in Wsh and Ph mutant mice. Proc. Natl. Acad. Sci. USA 92, 3754–3758.

    Article  CAS  PubMed  Google Scholar 

  17. Yamazaki, M., Tsujimura, T., Morii, E., et al. (1994) C-kit gene is expressed by skin mast cells in embryos but not in puppies of Wsh/Wsh mice: age-dependent abolishment of c-kit gene expression. Blood 83, 3509–3516.

    CAS  PubMed  Google Scholar 

  18. Duttlinger, R., Manova, K., Chu, T. Y., et al. (1993) W-sash affects positive and negative elements controlling c-kit expression: ectopic c-kit expression at sites of kit-ligand expression affects melanogenesis. Development 118, 705–717.

    CAS  PubMed  Google Scholar 

  19. Tono, T., Tsujimura, T., Koshimizu, U., et al. (1992) C-kit gene was not transcribed in cultured mast cells of mast cell-deficient Wsh/Wsh mice that have a normal number of erythrocytes and a normal c-kit coding region. Blood 80, 1448–1453.

    CAS  PubMed  Google Scholar 

  20. Besmer, P., Manova, K., Duttlinger, R., et al. (1993) The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Dev. Suppl. 125–137.

    Google Scholar 

  21. Scharenber, A. M. and Kinet J. P. (1995) Early events in mast cell signal transduction, in Human Basophils and Mast Cells: Biological Aspects (Marone, G., ed.), Karger, Basel, pp. 72–87.

    Chapter  Google Scholar 

  22. Okayama, Y., Tkaczyk, C., Metcalfe, D. D., and Gilfillan, A. M. (2003) Comparison of Fc epsilon RI-and Fc gamma RI-mediated degranulation and TNF-alpha synthesis in human mast cells: selective utilization of phosphatidylinositol-3-kinase for Fc gamma RI-induced degranulation. Eur J. Immunol. 33, 1450–1459.

    Article  CAS  PubMed  Google Scholar 

  23. Sylvestre, D. L. and Ravetch, J. V. (1996) A dominant role for mast cell Fc receptors in the Arthus reaction. Immunity 5, 387–390.

    Article  CAS  PubMed  Google Scholar 

  24. Daeron, M., Malbec, O., Latour, S., Arock, M., and Fridman, W. H. (1995) Regulation of high-affinity IgE receptor-mediated mast cell activation by murine lowaffinity IgG receptors. J. Clin. Invest. 95, 577–585.

    Article  CAS  PubMed  Google Scholar 

  25. Marshall, J. S., McCurdy, J. D., and Olynych, T. (2003) Toll-like receptor-mediated activation of mast cells: implications for allergic disease? Int. Arch. Allergy Immunol. 132, 87–97.

    Article  CAS  PubMed  Google Scholar 

  26. el-Lati, S. G., Dahinden, C. A., Church, M. K., Dahinden, C. A., and Church, M. K. (1994) Complement peptides C3a-and C5a-induced mediator release from dissociated human skin mast cells. J. Invest. Dermatol. 102, 803–806.

    Article  CAS  PubMed  Google Scholar 

  27. Fuereder, W., Agis, H., Willheim, M., et al. (1995) Differential expression of complement receptors on human basophils and mast cells. J. Immunol. 155, 3152–3160.

    Google Scholar 

  28. Wotja, J., Kaun, C., Zorn, G., et al. (2002) C5a stimulates production of plasminogen activator inhibitor-1 in human mast cells and basophils. Blood 100, 517–523.

    Article  Google Scholar 

  29. Ansel, J. C., Brown, J. R., Payan, D. G., and Brown, M. A. (1993) Substance Pselectively activates TNF-alpha gene expression in murine mast cells. J. Immunol. 150, 4478–4485.

    CAS  PubMed  Google Scholar 

  30. Galli, S. J. (1997) The mast cell: a versatile effector cell for a challenging world. Int. Arch. Allergy Immunol. 113, 14–22.

    Article  CAS  PubMed  Google Scholar 

  31. Kemp, S. F. and Lockey, R. F. (2002) Anaphylaxis: a review of causes and mechanisms. J. Allergy Clin. Immunol. 110, 341–348.

    Article  CAS  PubMed  Google Scholar 

  32. Galli, S. and Wershil, B. (1996) The two faces of the mast cell. Nature 381, 21–22.

    Article  CAS  PubMed  Google Scholar 

  33. Wills-Karp, M. and Hershey, G. K. K. (2003) Immunological mechanisms of allergic disorders, in Fundamental Immunology (Paul, W. E., ed.), Lippincott Williams and Wilkins, Philadelphia, pp. 1439–1479.

    Google Scholar 

  34. Gauchat, J. F., Henchoz, S., Mazzei, G., et al. (1993) Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365, 340–343.

    Article  CAS  PubMed  Google Scholar 

  35. Jutel, M., Klunker, S., Akdis, M., et al. (2001) Histamine upregulates Th1 and downregulates Th2 responses due to different patterns of surface histamine 1 and 2 receptor expression. Int. Arch. Allergy Immunol. 124, 190–192.

    Article  CAS  PubMed  Google Scholar 

  36. Jutel, M., Watanabe, T., Klunker, S., et al. (2001) Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413, 420–425.

    Article  CAS  PubMed  Google Scholar 

  37. Mazzoni, A., Young, H. A., Spitzer, J. H., Visintin, A., and Segal, D. M. (2001) Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J. Clin. Invest. 108, 1865–1873.

    CAS  PubMed  Google Scholar 

  38. Teuscher, C., Poynter, M. E., Offner, H., et al. (2004) Attenuation of Th1 effector cell responses and susceptibility to experimental allergic encephalomyelitis in histamine H2 receptor knockout mice is due to dysregulation of cytokine production by antigen-presenting cells. Am. J. Pathol. 164, 883–892.

    Article  CAS  PubMed  Google Scholar 

  39. Montealegre, F., Quinones, C., Torres, N., and Goth, K. (2002) Detection of serine proteases in extracts of the domestic mite Blomia tropicalis. Exp. Appl. Acarol. 26, 87–100.

    Article  CAS  PubMed  Google Scholar 

  40. Miike, S. and Kita, H. (2003) Human eosinophils are activated by cysteine proteases and release inflammatory mediators. J. Allergy Clin. Immunol. 111, 704–713.

    Article  CAS  PubMed  Google Scholar 

  41. Bradding, P. (2003) The role of the mast cell in asthma: a reassessment. Curr. Opin. Allergy Clin. Immunol. 3, 45–50.

    Article  CAS  PubMed  Google Scholar 

  42. Marrack, P., Kappler, J., and Kotzin, B. L. (2001) Autoimmune disease: why and where it occurs. Nat. Med. 7, 899–905.

    Article  CAS  PubMed  Google Scholar 

  43. Martin, R., McFarland, H. F., and McFarlin, D. E. (1992) Immunological aspects of demyelinating diseases. Ann. Rev. Immunol. 10, 153–187.

    Article  CAS  Google Scholar 

  44. Steinman, L. (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85, 299–302.

    Article  CAS  PubMed  Google Scholar 

  45. French-Constant, C. (1994) Pathogenesis of multiple sclerosis. Lancet 343, 271–275.

    Article  Google Scholar 

  46. Kermode, A. G. (1990) Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Brain 113, 1477–1489.

    Article  PubMed  Google Scholar 

  47. Neuman, J. (1890) Ueber das Vorkommen der sogneannten “Mastzellen” bei pathologischen Veraenderungen des Gehirns. Arch. Pathol. Anat. Physiol. Virchows 122, 378–381.

    Article  Google Scholar 

  48. Bebo, B. F., Jr., Yong, T., Orr, E. L., and Linthicum, D. S. (1996) Hypothesis: a possible role for mast cells and their inflammatory mediators in the pathogenesis of autoimmune encephalomyelitis. J. Neurosci. Res. 45, 340–348.

    Article  CAS  PubMed  Google Scholar 

  49. Orr, E. L. (1988) Presence and distribution of nervous system-associated mast cells that may modulate experimental autoimmune encephalomyelitis. Ann. N.Y. Acad. Sci. 540, 723–726.

    Article  CAS  PubMed  Google Scholar 

  50. Ibrahim, M. Z., Reder, A. T., Lawand, R., Takash, W., and Sallouh-Khatib, S. (1996) The mast cells of the multiple sclerosis brain. J. Neuroimmunol. 70, 131–138.

    Article  CAS  PubMed  Google Scholar 

  51. Brenner, T., Soffer, D., Shalit, M., and Levi-Schaffer, F. (1994) Mast cells in experimental allergic encephalomyelitis: characterization, distribution in the CNS and in vitro activation by myelin basic protein and neuropeptides. J. Neurol. Sci. 122, 210–213.

    Article  CAS  PubMed  Google Scholar 

  52. Rozniecki, J. J., Hauser, S. L., Strein, M., Lincoln, R., and Theoharides, T. C. (1995) Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann. Neurol. 37, 63–66.

    Article  CAS  PubMed  Google Scholar 

  53. Dietsch, G. N. and Hinrichs, D. J. (1991) Mast cell proteases liberate stable encephalitogenic fragments from intact myelin. Cell. Immunol. 135, 541–548.

    Article  CAS  PubMed  Google Scholar 

  54. Johnson, D., Seeldrayers, P. A., and Weiner, H. L. (1988) The role of mast cells in demyelination. 1. Myelin proteins are degraded by mast cell proteases and myelin basic protein and P2 can stimulate mast cell degranulation. Brain Res. 44, 195–198.

    Article  Google Scholar 

  55. Johnson, D., Weiner, H. L., and Seeldrayers, P. A. (1988) Role of mast cells in peripheral nervous system demyelination. Ann. N.Y. Acad. Sci. 540, 727–731.

    Article  CAS  PubMed  Google Scholar 

  56. Johnson, D., Yasui, D., and Seeldrayers, P. (1991) An analysis of mast cell frequency in the rodent nervous system: Numbers vary between different strains and can be reconstituted in mast cell-deficient mice. J. Neuropath. Exp. Neurol. 50, 227–234.

    Article  CAS  PubMed  Google Scholar 

  57. Brosnan, C. F. and Tansey, F. A. (1984) Delayed onset of experimental allergic neuritis in rats treated with reserpine. J. Neuropathol. Exp. Neurol. 43, 84–93.

    Article  CAS  PubMed  Google Scholar 

  58. Dietsch, G. N. and Hinrichs, D. J. (1989) The role of mast cells in the elicitation of experimental allergic encephalomyelitis. J. Immunol. 142, 1476–1481.

    CAS  PubMed  Google Scholar 

  59. Seeldrayers, P. A., Yasui, D., Weiner, H. L., and Johnson, D. (1989) Treatment of experimental allergic neuritis with nedocromil sodium, an anti-inflammatory drug with mast cell stabilizing properties. J. Neuroimmunol. 25, 221–226.

    Article  CAS  PubMed  Google Scholar 

  60. Pedotti, R., Mitchell, D., Wedemeyer, J., et al. (2001) An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat. Immunol. 2, 216–222.

    Article  CAS  PubMed  Google Scholar 

  61. Lock, C., Hermans, G., Pedotti, R., et al. (2002) Gene microarray analysis of multiple sclerosis lesions yield new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508.

    Article  CAS  PubMed  Google Scholar 

  62. Malfait, A. M., Malik, A. S., Marinova-Mutafchieva, L., Butler, D. M., Maini, R. N., and Feldmann, M. (1999) The beta2-adrenergic agonist salbutamol is a potent suppressor of established collagen-induced arthritis: mechanisms of action. J. Immunol. 162, 6278–6283.

    CAS  PubMed  Google Scholar 

  63. Lee, D. M., Friend, D. S., Gurish, M. F., Benoist, C., Mathis, D., and Brenner, M. B. (2002) Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297, 1689–1692.

    Article  CAS  PubMed  Google Scholar 

  64. Matsumoto, I., Lee, D. M., Goldbach-Mansky, R., et al. (2003) Low prevalence of antibodies to glucose-6-phosphate isomerase in patients with rheumatoid arthritis and a spectrum of other chronic autoimmune disorders. Arthritis Rheum. 48, 944–954.

    Article  CAS  PubMed  Google Scholar 

  65. Maccioni, M., Zeder-Lutz, G., Huang, H., et al. (2002) Arthritogenic monoclonal antibodies from K/BxN mice. J. Exp. Med. 195, 1071–1077.

    Article  CAS  PubMed  Google Scholar 

  66. Ji, H., Ohmura, K., Mahmood, U., et al. (2002) Arthritis critically dependent on innate immune system players. Immunity 16, 157–168.

    Article  CAS  PubMed  Google Scholar 

  67. Benoist, C. and Mathis, D. (2001) Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat. Immunol. 2, 797–801.

    Article  CAS  PubMed  Google Scholar 

  68. Matsumoto, I., Staub, A., Benoist, C., and Mathis, D. (1999) Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 286, 1732–1735.

    Article  CAS  PubMed  Google Scholar 

  69. Ji, H., Korganow, A. S., Mangialaio, S., et al. (1999) Different modes of pathogenesis in T-cell-dependent autoimmunity: clues from two TCR transgenic systems. Immunol. Rev. 169, 139–146.

    Article  CAS  PubMed  Google Scholar 

  70. Wolley, D. E. and Tetlow, L. C. (2000) Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion. Arthritis Res. 2, 65–74.

    Article  Google Scholar 

  71. Skopouli, F. N., Li, L., Boumba, D., et al. (1998) Association of mast cells with fibrosis and fatty infiltration in the minor salivary glands of patients with Sjogren’s syndrome. Clin. Exp. Rheumatol. 16, 63–65.

    CAS  PubMed  Google Scholar 

  72. Baba, T., Sonozaki, H., Seki, K., Uchiyama, M., Ikesawa, Y., and Toriisu, M. (1976) An eosinophil chemotactic factor present in blister fluids of bullous pemphigoid patients. J. Immunol. 116, 112–116.

    CAS  PubMed  Google Scholar 

  73. Goldstein, S. M., Wasserman, S. I., and Wintroub, B. U. (1989) Mast cell and eosinophil mediated damage in bullous pemphigoid. Immunol. Ser. 46, 527–545.

    CAS  PubMed  Google Scholar 

  74. Wintroub, B. U., Mihm, M. C., Jr., Goetzl, E. J., Soter, N. A., and Austen, K. F. (1978) Morphologic and functional evidence for release of mast-cell products in bullous pemphigoid. N. Engl. J. Med. 298, 417–421.

    Article  CAS  PubMed  Google Scholar 

  75. Katayama, I., Doi, T., and Nishioka, K. (1984) High histamine level in the blister fluid of bullous pemphigoid. Arch. Dermatol. Res. 276, 126–127.

    Article  CAS  PubMed  Google Scholar 

  76. Ludgate, M. and Baker, G. (2002) Unlocking the immunological mechanisms of orbital inflammation in thyroid eye disease. Clin. Exp. Immunol. 127, 193–198.

    Article  CAS  PubMed  Google Scholar 

  77. Kiely, P. D., Pecht, I., and Oliveira, D. B. (1997) Mercuric chloride-induced vasculitis in the Brown Norway rat: alpha beta T cell-dependent and-independent phases: role of the mast cell. J. Immunol. 159, 5100–5106.

    CAS  PubMed  Google Scholar 

  78. Esposito, I., Friess, H., Kappeler, A., et al. (2001) Mast cell distribution and activation in chronic pancreatitis. Hum. Pathol. 32, 1174–1183.

    Article  CAS  PubMed  Google Scholar 

  79. Esposito, I., Kleeff, J., Bischoff, S. C., et al. (2002) The stem cell factor-c-kit system and mast cells in human pancreatic cancer. Lab. Invest. 82, 1481–1492.

    CAS  PubMed  Google Scholar 

  80. Dib, M., Zhao, X., Wang, X., and Andersson, R. (2002) Mast cells contribute to early pancreatitis-induced systemic endothelial barrier dysfunction. Pancreatology 2, 396–401.

    Article  PubMed  Google Scholar 

  81. Dib, M., Zhao, X., Wang, X. D., and Andersson, R. (2002) Role of mast cells in the development of pancreatitis-induced multiple organ dysfunction. Br. J. Surg. 89, 172–178.

    CAS  PubMed  Google Scholar 

  82. Zimnoch, L., Szynaka, B., and Puchalski, Z. (2002) Mast cells and pancreatic stellate cells in chronic pancreatitis with differently intensified fibrosis. Hepatogastroenterology 49, 1135–1138.

    PubMed  Google Scholar 

  83. Secor, V. H., Secor, W. E., Gutekunst, C. A., and Brown, M. A. (2000) Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J. Exp. Med. 191, 813–822.

    Article  CAS  PubMed  Google Scholar 

  84. Chen, R., Ning, G., Zhao, M. L., et al. (2001) Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J. Clin. Invest. 108, 1151–1158.

    CAS  PubMed  Google Scholar 

  85. Echtenacher, B., Mannel, D. N., and Hultner, L. (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381, 75–77.

    Article  CAS  PubMed  Google Scholar 

  86. Malaviya, R., Ikeda, T., Ross, E., and Abraham, S. N. (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381, 77–80.

    Article  CAS  PubMed  Google Scholar 

  87. Garbuzenko, E., Nagler, A., Pickholtz, D., et al. (2002) Human mast cells stimulate fibroblast proliferation, collagen synthesis and lattice contraction: a direct role for mast cells in skin fibrosis. Clin. Exp. Allergy 32, 237–246.

    Article  CAS  PubMed  Google Scholar 

  88. Hiromatsu, Y. and Toda, S. (2003) Mast cells and angiogenesis. Microsc. Res. Tech. 60, 64–69.

    Article  PubMed  Google Scholar 

  89. Gavrisheva, N. A. and Tkachenko, S. B. (2003) Mast cells in normal and diseased heart. Kardiologiia 43, 59–65.

    CAS  PubMed  Google Scholar 

  90. Shiota, N., Rysa, J., Kovanen, P. T., Ruskoaho, H., Kokkonen, J. O., and Lindstedt, K. A. (2003) A role for cardiac mast cells in the pathogenesis of hypertensive heart disease. J. Hypertens. 21, 1935–1944.

    Article  CAS  PubMed  Google Scholar 

  91. Ren, G., Dewald, O., and Frangogiannis, N. G. (2003) Inflammatory mechanisms in myocardial infarction. Curr. Drug Targets Inflamm. Allergy 2, 242–256.

    Article  CAS  PubMed  Google Scholar 

  92. Iamaroon, A., Pongsiriwet, S., Jittidecharaks, S., Pattanaporn, K., Prapayasatok, S., and Wanachantararak, S. (2003) Increase of mast cells and tumor angiogenesis in oral squamous cell carcinoma. J. Oral Pathol. Med. 32, 195–199.

    Article  PubMed  Google Scholar 

  93. Samoszuk, M. and Corwin, M. A. (2003) Mast cell inhibitor cromolyn increases blood clotting and hypoxia in murine breast cancer. Int. J. Cancer 107, 159–163.

    Article  CAS  PubMed  Google Scholar 

  94. Le Querrec, A., Duval, D., and Tobelem, G. (1993) Tumour angiogenesis. Baillieres Clin. Haematol. 6, 711–730.

    Article  PubMed  Google Scholar 

  95. Ranieri, G., Passantino, L., Patruno, R., et al. (2003) The dog mast cell tumour as a model to study the relationship between angiogenesis, mast cell density and tumour malignancy. Oncol. Rep. 10, 1189–1193.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Gregory, G.D., Brown, M.A. (2006). Mast Cells in Allergy and Autoimmunity. In: Krishnaswamy, G., Chi, D.S. (eds) Mast Cells. Methods in Molecular Biology, vol 315. Humana Press. https://doi.org/10.1385/1-59259-967-2:035

Download citation

  • DOI: https://doi.org/10.1385/1-59259-967-2:035

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-374-9

  • Online ISBN: 978-1-59259-967-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics