Skip to main content

In Vitro Physical Stimulation of Tissue-Engineered and Native Cartilage

  • Protocol
Cartilage and Osteoarthritis

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 100))

Abstract

Because of the limited availability of donor cartilage for resurfacing defects in articular surfaces, there is tremendous interest in the in vitro bioengineering of cartilage replacements for clinical applications. However, attaining mechanical properties in engineered cartilaginous constructs that approach those of native cartilage has not been previously achieved when constructs are cultured under free-swelling conditions. One approach toward stimulating the development of constructs that are mechanically more robust is to expose them to physical environments that are similar, in certain ways, to those encountered by native cartilage. This is a strategy motivated by observations in numerous short-term experiments that certain mechanical signals are potent stimulators of cartilage metabolism. On the other hand, excess mechanical loading can have a deleterious effect on cartilage. Culture conditions that include a physical stimulation component are made possible by the use of specialized bioreactors. This chapter addresses some of the issues involved in using bioreactors as integral components of cartilage tissue engineering and in studying the physical regulation of cartilage. We first consider the generation of cartilaginous constructs in vitro. Next we describe the rationale and design of bioreactors that can impart either mechanical deformation or fluid-induced mechanical signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freed, L. E., Vunjak-Novakovic, G., and Langer, R. (1993) Cultivation of cellpolymer cartilage implants in bioreactors. J. Cell. Biochem. 51, 257ā€“264.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Dunkelman, N. S., Zimber, M. P., LeBaron, R. G., Pavelec, R., Kwan, M., and Purchio, A. F. (1995) Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechno.l Bioeng. 46, 299ā€“305.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Wakitani, S., Kimura, T., Hirooka, A., et al. (1989) Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J. Bone Joint. Surg. Br. 71-B, 74ā€“80.

    Google ScholarĀ 

  4. Kim, W. S., Vacanti, J. P., Cima, L., et al. (1994) Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plast. Reconstr. Surg. 94, 233ā€“237.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Masuda, K., Sah, R. L., Hejna, M. J., and Thonar, E. J.-M. A. (2003) A novel two-step method for the formation of tissue engineered cartilage: the alginaterecovered-chondrocyte (ARC) method. J. Orthop. Res. 21, 139ā€“148.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889ā€“895.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Peterson, L., Minas, T., Brittberg, M., Nilsson, A., Sjogren-Jansson, E., and Lindahl, A. (2000) Two-to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. 374, 212ā€“234.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  8. Breinan, H. A., Minas, T., Barone, L., et al. (1998) Histological evaluation of the course of healing of canine articular cartilage defects treated with cultured autologous chondrocytes. Tissue Eng. 4, 101ā€“114.

    ArticleĀ  Google ScholarĀ 

  9. Brittberg, M., Nilsson, A., Lindahl, A., Ohlsson, C., and Peterson, L. (1996) Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin. Orthop. 326, 270ā€“283.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  10. Nehrer, S., Breinan, H. H., Ashkar, S., et al. (1998) Characteristics of articular chondrocytes seeded in collagen matrices in vitro. Tissue Eng. 4, 175ā€“183.

    ArticleĀ  Google ScholarĀ 

  11. Sams, A. E. and Nixon, A. J. (1995) Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartilage 3, 47ā€“59.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Shortkroff, S., Barone, L., Hsu, H. P., et al. (1996) Healing of chondral and osteochondral defects in a canine model: the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials 17, 147ā€“154.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Wakitani, S., Goto, T., Young, R. G., Mansour, J. M., Goldberg, V. M., and Caplan, A. I. (1998) Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue. Eng. 4, 429ā€“444.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Muir, H. (1995) The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays 17, 1039ā€“1048.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Slowman, S. D. and Brandt, K. D. (1986) Composition and glycosaminoglycan metabolism of articular cartilage from habitually loaded and habitually unloaded sites. Arthritis Rheum. 29, 88ā€“94.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Kiviranta, I., Jurvelin, J., Tammi, M., Saamanen, A.-M., and Helminen, H. J. (1987) Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum. 30, 801ā€“809.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Behrens, F., Kraft, E. L., and Oegema, T. R. (1989) Biochemical changes in articular cartilage after joint immobilization by casting or external fixation. J. Orthop. Res. 7, 335ā€“343.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Caterson, B. and Lowther, D. A. (1978) Changes in the metabolism of the proteoglycans from sheep articular cartilage in response to mechanical stress. Biochim. Biophys. Acta 540, 412ā€“422.

    CASĀ  Google ScholarĀ 

  19. Jurvelin, J., Kiviranta, I., Saamanen, A.-M., Tammi, M., and Helminen, H. J. (1989) Partial restoration of immobilization-induced softening of canine articular cartilage after remobilization of the knee (stifle) joint. J. Orthop. Res. 7, 352ā€“358.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Saamanen, A.-M., Tammi, M., Jurvelin, J., Kiviranta, I., and Helminen, H. J. (1990) Proteoglycan alterations following immobilization and remobilization in the articular cartilage of young canine knee (stifle) joint. J. Orthop. Res. 8, 863ā€“873.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Kiviranta, I., Tammi, M., Jurvelin, J., Saamanen, A. M., and Helminen, H. J. (1988) Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J. Orthop. Res. 6, 188ā€“195.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Helminen, H. J., Jurvelin, J., Kiviranta, I., Paukkonen, K., SƤƤmƤnen, A.-M., and Tammi, M. (1987) Joint loading effects on articular cartilage: a historical review, in Joint Loading: Biology and Health of Articular Structures (Helminen, H. J., Kiviranta, I., Tammi, M., SƤƤmƤnen, A.-M., Paukkonen, K,. and Jurvelin, J., eds.), Wright, Bristol, UK, pp. 1ā€“46.

    Google ScholarĀ 

  23. Grodzinsky, A. J. (1983) Electromechanical and physicochemical properties of connective tissue. CRC Crit. Rev. Bioeng. 9, 133ā€“199.

    CASĀ  Google ScholarĀ 

  24. Maroudas, A. (1979) Physico-chemical properties of articular cartilage, in Adult Articular Cartilage 2nd ed., (Freeman, M. A. R., ed.), Pitman Medical, Tunbridge Wells, England, UK, pp. 215ā€“290.

    Google ScholarĀ 

  25. Mow, V. C., Wang, C. C., and Hung, C. T. (1999) The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthritis Cartilage 7, 41ā€“58.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Urban, J. P. (2000) Present perspectives on cartilage and chondrocyte mechanobiology. Biorheology 37, 185ā€“190.

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Grodzinsky, A. J., Levenston, M. E., Jin, M., and Frank, E. H. (2000) Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2, 691ā€“713.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Guilak, F., Sah, R. L., and Setton, L. A. (1997) Physical regulation of cartilage metabolism, in Basic Orthopaedic Biomechanics 2nd Ed. (Mow, V. C. and Hayes, W. C., eds.), Raven, New York, NY, pp. 179ā€“207.

    Google ScholarĀ 

  29. Burton-Wurster, N., Vernier-Singer, M., Farquhar, T., and Lust, G. (1993) Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. J. Orthop. Res. 11, 717ā€“729.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Gray, M. L., Pizzanelli, A. M., Grodzinsky, A. J., and Lee, R. C. (1988) Mechanical and physicochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6, 777ā€“792.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Guilak, F., Meyer, B. C., Ratcliffe, A., and Mow, V. C. (1994) The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthritis Cartilage 2, 91ā€“101.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Jones, I. L., Klamfeldt, D. D. S., and Sandstrom, T. (1982) The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans in vitro. Clin. Orthop. 165, 283ā€“289.

    CASĀ  PubMedĀ  Google ScholarĀ 

  33. Sah, R. L., Kim, Y. J., Doong, J. H., Grodzinsky, A. J., Plaas, A. H. K., and Sandy, J. D. (1989) Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7, 619ā€“636.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Copray, J. C. V. M., Jansen, H. W. B., and Duterloo, H. S. (1985) Effect of compressive forces on phosphatase activity in mandibular condylar cartilage of the rat in vitro. J. Anat. 140, 479ā€“489.

    PubMedĀ  Google ScholarĀ 

  35. Palmoski, M. J. and Brandt, K. D. (1984) Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum. 27, 675ā€“681.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Parkkinen, J. J., Lammi, M. J., Helminen, H. J., and Tammi, M. (1992) Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J. Orthop. Res. 10, 610ā€“620.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Buschmann, M. D., Kim, Y. J., Wong, M., Frank, E., Hunziker, E. B., and Grodzinsky, A. J. (1999) Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch. Biochem. Biophys. 366, 1ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Kim, Y. J., Sah, R. L., Grodzinsky, A. J., Plaas, A. H. K., and Sandy, J. D. (1994) Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch. Biochem. Biophys. 311, 1ā€“12.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Buschmann, M. D., Gluzband, Y. A., and Grodzinsky, A. J. (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108, 1497ā€“1508.

    CASĀ  PubMedĀ  Google ScholarĀ 

  40. Lee, D. A. and Bader, D. L. (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15, 181ā€“188.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  41. Ragan, P. M., Chin, V. I., Hung, H. H., et al. (2000) Chondrocyte extracellular matrix synthesis and turnover are influenced by static compression in a new alginate disk culture system. Arch. Biochem. Biophys. 383, 256ā€“264.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Fukuda, K., Kumano, F., Asada, S., Saitoh, M., and Tanaka, S. (1997) Cyclic tensile stretch loaded on bovine articular chondrocytes inhibits protein kinase C activity. Osteoarthritis Cartilage 5, A38.

    Google ScholarĀ 

  43. Smith, R. L., Donlon, B. S., Gupta, M. K., et al. (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J. Orthop. Res. 13, 824ā€“831.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Parkkinen, J. J., Ikonen, J., Lammi, M. J., Laakkonen, J., Tammi, M., and Helminen, H. J. (1993) Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch. Biochem. Biophys. 300, 458ā€“465.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Thibault, M., Poole, A. R., and Buschmann, M. D. (2002) Cyclic compression of cartilage/bone explants in vitro leads to physical weakening, mechanical breakdown of collagen and release of matrix fragments. J. Orthop. Res. 20, 1265ā€“1273.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Loening, A., Levenston, M., James, I., Nuttal, M., et al. (2000) Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis. Arch. Biochem. Biophys. 381, 205ā€“212.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Dā€™Lima, D. D., Hashimoto, S., Chen, P. C., Colwell, C. W. Jr., and Lotz, M. K. (2001) Impact of mechanical trauma on matrix and cells. Clin. Orthop. 391(Suppl.), S90ā€“S99.

    PubMedĀ  Google ScholarĀ 

  48. Kurz, B., Jin, M., Patwari, P., Cheng, D. M., Lark, M. W., and Grodzinsky, A. J. (2001) Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J. Orthop. Res. 19, 1140ā€“1146.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Clements, K. M., Bee, Z. C., Crossingham, G. V., Adams, M. A., and Sharif, M. (2001) How severe must repetitive loading be to kill chondrocytes in articular cartilage? Osteoarthritis Cartilage 9, 499ā€“507.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Quinn, T. M., Allen, R. G., Schalet, B. J., Perumbuli, P., and Hunziker, E. B. (2001) Matrix and cell injury due to sub-impact loading of adult bovine articular cartilage explants: effects of strain rate and peak stress. J. Orthop. Res. 19, 242ā€“249.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Dā€™Lima, D. D., Hashimoto, S., Chen, P. C., Lotz, M. K., and Colwell, C. W. Jr. (2001) Cartilage injury induces chondrocyte apoptosis. J. Bone Joint. Surg. Am. 83-A(Suppl. 2), 19ā€“21.

    PubMedĀ  Google ScholarĀ 

  52. Freed, L. E., Grande, D. A., Lingbin, Z., Emmanual, J., Marquis, J. C., and Langer, R. (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J. Biomed. Mater. Res. 28, 891ā€“899.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Amiel, D., Chu, C. R., Sah, R. L., and Coutts, R. D. (1998) Tissue engineering of articular cartilage: perichondrial cells in osteochondral repair. Cells Mat. 8, 161ā€“174.

    Google ScholarĀ 

  54. Nakahara, H., Goldberg, V. M., and Caplan, A. I. (1991) Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J. Orthop. Res. 9, 465ā€“476.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Wakitani, S., Goto, T., Pineda, S. J., et al. (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint. Surg. 76-A, 579ā€“592.

    Google ScholarĀ 

  56. Johnstone, B. and Yoo, J. U. (1999) Autologous mesenchymal progenitor cells in articular cartilage repair. Clin. Orthop. 367S, 156ā€“162.

    Google ScholarĀ 

  57. Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211ā€“228.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. HƤuselmann, H. J., Masuda, K., Hunziker, E. B., et al. (1996) Adult human chondrocytes cultured in alginate form a matrix similar to native human articular cartilage. Am. J. Physiol. 40, C742ā€“C752.

    Google ScholarĀ 

  59. Chu, C. R., Coutts, R. D., Yoshioka, M., Harwood, F. L., Monosov, A. Z., and Amiel, D. (1995) Articular cartilage repair using allogeneic perichondrocyte seeded biodegradable porous polylactic acid (PLA): a tissue engineering study. J. Biomed. Mater. Res. 29, 1147ā€“1154.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Moran, J. M., Pazzano, D., and Bonassar, L. J. (2003) Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Eng. 9, 63ā€“70.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Ben-Yishay, A., Grande, D. A., Schwartz, R. E., Menche, D., and Pitman, M. D. (1995) Repair of articular cartilage defects with collagen-chondrocyte allografts. Tissue Eng. 1, 119ā€“133.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. Lee, C. R., Grodzinsky, A. J., Hsu, H. P., and Spector, M. (2003) Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model. J. Orthop. Res. 21, 272ā€“281.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  63. Solchaga, L. A., Yoo, J. U., Lundberg, M., et al. (2000) Hyasluronanbased polymers in the treatment of osteochondral defects. J. Orthop. Res. 18, 773ā€“780.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  64. Lee, K. Y. and Mooney, D. J. (2001) Hydrogels for tissue engineering. Chem. Rev. 101, 1869ā€“1879.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  65. Mauck, R. L., Soltz, M. A., Wang, C. C., et al. (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122, 252ā€“260.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Guo, J. F., Jourdian, G. W., and MacCallum, D. K. (1989) Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect. Tissue Res. 19, 277ā€“297.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. van Susante, J. L., Buma, P., Schuman, L., Homminga, G. N., van den Berg, W. B., and Veth, R. P. (1999) Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials 20, 1167ā€“1175.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  68. Bryant, S. J. and Anseth, K. S. (2003) Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J. Biomed. Mater. Res. 64A, 70ā€“79.

    ArticleĀ  CASĀ  Google ScholarĀ 

  69. Elisseeff, J., Anseth, K., Sims, D., McIntosh, W., Randolph, M., and Langer, R. (1999) Transdermal photopolymerization for minimally invasive implantation. Proc. Natl. Acad. Sci. USA 96, 3104ā€“3107.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  70. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143ā€“147.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Kandel, R. A., Chen, H., Clark, J., and Renlund, R. (1995) Transplantation of cartilagenous tissue generated in vitro into articular joint defects. Artif. Cells Blood Substit. Immobil. Biotechnol. 23, 565ā€“577.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  72. Williams, K. A., Saini, S., and Wick, T. M. (2002) Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol. Prog. 18, 951ā€“963.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. Park, A., Wu, B., and Griffith, L. G. (1998) Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion. J. Biomater. Sci. Polym. Ed. 9, 89ā€“110.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Chang, S. C., Rowley, J. A., Tobias, G., et al. (2001) Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J. Biomed. Mater. Res. 55, 503ā€“511.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  75. Khouri, R. K., Koudsi, B., and Reddi, H. (1991) Tissue transformation into bone in vivo. A potential practical application. JAMA 266, 1953ā€“1955.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  76. Pei, M., Solchaga, L. A., Seidel, J., et al. (2002) Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J. 16, 1691ā€“1694.

    CASĀ  PubMedĀ  Google ScholarĀ 

  77. Vunjak-Novakovic, G., Obradovic, B., Martin, I., Bursac, P. M., Langer, R., and Freed, L. E. (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14, 193ā€“202.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  78. Martin, I., Obradovic, B., Treppo, S., et al. (2000) Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37, 141ā€“147.

    CASĀ  PubMedĀ  Google ScholarĀ 

  79. Ahsan, T., Chen, A. C., Chin, L., et al. (2003) Effects of long-term growth on tissue engineered cartilage. Trans. Orthop. Res. Soc. 28, 309.

    Google ScholarĀ 

  80. Freshney, R. I. (1994) Culture of Animal Cells: A Manual of Basic Technique 3rd. Ed., Wiley-Liss, New York, NY.

    Google ScholarĀ 

  81. Sah, R. L., Doong, J. Y. H., Grodzinsky, A. J., Plaas, A. H. K., and Sandy, J. D. (1991) Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage explants. Arch. Biochem. Biophys. 286, 20ā€“29.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  82. Davisson, T. H., Sah, R. L., and Ratcliffe, A. R. (2002) Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng. 8, 807ā€“816.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  83. Gray, M. L., Pizzanelli, A. M., Lee, R. C., Grodzinsky, A. J., and Swann, D. A. (1989) Kinetics of the chondrocyte biosynthetic response to compressive load and release. Biochim. Biophys. Acta 991, 415ā€“425.

    CASĀ  PubMedĀ  Google ScholarĀ 

  84. Kisiday, J., Siparsky, P. N., and Grodzinsky, A. J. (2003) Anabolic and catabolic response to dynamic compression in a chondrocyte-seeded self-assembling peptide hydrogel. Trans. Orthop. Res. Soc. 28, 304.

    Google ScholarĀ 

  85. Kisiday, J., Jin, M., and Grodzinsky, A. J. (2002) Effects of dynamic compressive loading duty cycle on in vitro conditioning of chondrocyte-seeded peptide and agarose scaffolds. Trans. Orthop. Res. Soc. 27, 216.

    Google ScholarĀ 

  86. Williamson, A. K., Chen, A. C., and Sah, R. L. (2001) Compressive properties and function-composition relationships of developing bovine articular cartilage. J. Orthop. Res. 19, 1113ā€“1121.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  87. Quinn, T. M., Grodzinsky, A. J., Hunziker, E. B., and Sandy, J. D. (1998) Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants. J. Orthop. Res. 16, 490ā€“499.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  88. Jeffrey, J. E., Thomson, L. A., and Aspden, R. M. (1997) Matrix loss and synthesis following a single impact load on articular cartilage in vitro. Biochim. Biophys. Acta 1334, 223ā€“232.

    CASĀ  PubMedĀ  Google ScholarĀ 

  89. Jin, M., Frank, E. H., Quinn, T. M., Hunziker, E. B., and Grodzinsky, A. J. (2001) Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch. Biochem. Biophys. 395, 41ā€“48.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  90. Frank, E. H., Jin, M., Loening, A. M., Levenston, M. E., and Grodzinsky, A. J. (2000) A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J. Biomech. 33, 1523ā€“1527.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  91. Vunjak-Novakovic, G., Martin, I., Obradovic, B., et al. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17, 130ā€“139.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  92. Vunjak-Novakovic, G., Obradovic, B., Martin, I., and Freed, L. E. (2002) Bioreactor studies of native and tissue engineered cartilage. Biorheology 39, 259ā€“268.

    CASĀ  PubMedĀ  Google ScholarĀ 

  93. Obradovic, B., Meldon, J. H., Freed, L. E., and Vunjak-Novakovic, G. (2000) Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model. AICHE J. 46, 1860ā€“1871.

    ArticleĀ  CASĀ  Google ScholarĀ 

  94. Davisson, T. H., Ratcliffe, A., and Sah, R. L. (2000) Flow-induced physical stimuli during cartilage tissue engineering. Trans. Orthop. Res. Soc. 25, 610.

    Google ScholarĀ 

  95. Davisson, T. H., Wu, F. J., Jain, D., Sah, R. L., and Ratcliffe, A. R. (1999) Effect of perfusion on the growth of tissue engineered cartilage. Trans. Orthop. Res. Soc. 24, 811.

    Google ScholarĀ 

  96. Sittinger, M., Schultz, O., Keyszer, G., Minuth, W. W., and Burmester, G. R. (1997) Artificial tissues in perfusion culture. Int. J. Artif. Organs 20, 57ā€“62.

    CASĀ  PubMedĀ  Google ScholarĀ 

  97. Pazzano, D., Mercier, K. A., Moran, J. M., et al. (2000) Comparison of chondrogensis in static and perfused bioreactor culture. Biotechnol. Prog. 16, 893ā€“896.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  98. Davisson, T. H., Kunig, S., Chen, A. C., Sah, R. L., and Ratcliffe, A. (2002) The effects of perfusion and compression on modulation of tissue engineered cartilage. Trans. Orthop. Res. Soc. 277, 488.

    Google ScholarĀ 

  99. Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., Kimura, J. H., and Hunziker, E. B. (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10, 745ā€“758.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  100. Mok, S. S., Masuda, K., HƤuselmann, H. J., Aydelotte, M. B., and Thonar, E. J. (1994) Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. J. Biol. Chem. 269, 33,021ā€“33,027.

    CASĀ  PubMedĀ  Google ScholarĀ 

  101. Giurea, A., Klein, T. J., Chen, A. C., et al. (2003) Adhesion of perichondrial cells to a polylactic acid scaffold. J. Orthop. Res. 21, 584ā€“589.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  102. Bugbee, W. D. and Convery, F. R. (1999) Osteochondral allograft transplantation. Clin. Sports Med. 18, 67ā€“75.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  103. Outerbridge, H. K., Outerbridge, A. R., and Outerbridge, R. E. (1995) The use of a lateral patellar autologous graft for the repair of a large osteochondral defect in the knee. J. Bone Joint Surg. Am. 77-A, 65ā€“72.

    Google ScholarĀ 

  104. McDermott, A. G., Langer, F., Pritzker, K. P., and Gross, A. E. (1985) Fresh small-fragment osteochondral allografts. Long-term follow-up study on first 100 cases. Clin. Orthop. 197, 96ā€“102.

    PubMedĀ  Google ScholarĀ 

  105. Yamashita, F., Sakakida, K., Suzu, F., and Takai, S. (1985) The transplantation of an autogeneic osteochondral fragment for osteochondritis dissecans of the knee. Clin. Orthop. 201, 43ā€“50.

    PubMedĀ  Google ScholarĀ 

  106. Bobic, V. (1996) Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg. Sports Traumatol. Arthrosc. 3, 262ā€“264.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  107. Matsusue, Y., Yamamuro, T., and Hama, H. (1993) Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 9, 318ā€“321.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  108. Benya, P. D. and Shaffer, J. D. (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215ā€“224.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  109. Bonaventure, J., Kadhom, N., Cohen-Solal, L., et al. (1994) Re-expression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 212, 97ā€“104.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  110. Chen, A. C. and Sah, R. L. (1998) The effect of static compression on proteoglycan synthesis by chondrocytes transplanted to articular cartilage in vitro. J. Orthop. Res. 16, 542ā€“550.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  111. Li, K. W., Williamson, A. K., Wang, A. S., and Sah, R. L. (2001) Growth responses of cartilage to static and dynamic compression. Clin. Orthop. 391S, 34ā€“48.

    Google ScholarĀ 

  112. Schreiber, R. E., Ilten-Kirby, B. M., Dunkelman, N. S., et al. (1999) Repair of osteochondral defects with allogeneic tissue engineered cartilage implants. Clin. Orthop. 367(Suppl), 382ā€“395.

    Google ScholarĀ 

  113. Klein, T. K., Schumacher, B. L., Schmidt, T. A., et al. (2003) Tissue engineering of stratified articular cartilage from chondrocyte subpopulations. Osteoarthritis Cartilage 11, 592ā€“602.

    ArticleĀ  Google ScholarĀ 

  114. Davisson, T. H., Kunig, S., Chen, A. C., Sah, R. L., and Ratcliffe, A. (2002) Static and dynamic compression modulate biosynthesis in tissue engineered cartilage. J. Orthop. Res. 20, 842ā€“848.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  115. Sah, R. L. (2003) The biomechanical faces of articular cartilage, in The Many Faces of Osteoarthritis (Hascall, V. C., Kuettner, K. E., and Krall, A. M., eds.), Birkhauser Verlag, Basel, Switzerland, pp. 506.

    Google ScholarĀ 

  116. Bullough, P. G. and Cawston, T. E. (1994) Pathology and biochemistry of osteoarthritis, in Color Atlas and Text of Osteoarthritis (Doherty, M., ed.), Times Mirror International, London, UK, pp. 29ā€“60.

    Google ScholarĀ 

  117. Hunziker, E. B. (1992) Articular cartilage structure in humans and experimental animals, in Articular Cartilage and Osteoarthritis (Kuettner, K. E., Schleyerbach, R., Peyron, J. G., and Hascall, V. C., eds.), Raven, New York, NY, pp. 183ā€“199.

    Google ScholarĀ 

  118. Rosenberg, L. C. and Buckwalter, J. A. (1986) Cartilage proteoglycans, in Articular Cartilage Biochemistry (Kuettner, K., Schleyerbach, R., and Hascall, V. C., eds.), Raven, New York, NY, pp. 39ā€“57.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Li, K.W., Klein, T.J., Chawla, K., Nugent, G.E., Bae, W.C., Sah, R.L. (2004). In Vitro Physical Stimulation of Tissue-Engineered and Native Cartilage. In: Sabatini, M., Pastoureau, P., De Ceuninck, F. (eds) Cartilage and Osteoarthritis. Methods in Molecular Medicineā„¢, vol 100. Humana Press. https://doi.org/10.1385/1-59259-810-2:325

Download citation

  • DOI: https://doi.org/10.1385/1-59259-810-2:325

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-247-6

  • Online ISBN: 978-1-59259-810-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics