Skip to main content

Denaturing Gradient Gel Electrophoresis (DGGE) as a Fingerprinting Tool for Analyzing Microbial Communities in Contaminated Environments

  • Protocol
Environmental Microbiology

Part of the book series: Methods in Biotechnology ((MIBT,volume 16))

Abstract

The characterization of microbial communities has been very limited due to the lack of appropriate methods. The traditional selection of pure cultures and further study of their physiological and biochemical properties is not well adapted to the study of microbial communities. Indeed, it is assumed that nearly 99% of the microorganisms present in nature cannot be isolated and cultivated because of our ignorance of their physiological needs (1). Therefore, novel molecular techniques have been developed to compensate for the lack of cultivation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amman, R. I., Ludwig, W., and Schleiffer, K. H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169.

    Google Scholar 

  2. Muyzer, G., De Waal, E. C., and Uitterlinden, A. G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700.

    PubMed  CAS  Google Scholar 

  3. Myers, R. M., Fischer, S. G., Lerman, L. S., and Maniatis, T. (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13, 3131–3145.

    Article  PubMed  CAS  Google Scholar 

  4. Sheffield, V. C., Cox, D. R., Lerman, L. S., and Myers, R. M. (1989) Attachment of a 40-base-pair G+C rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. 86, 232–236.

    Article  PubMed  CAS  Google Scholar 

  5. Heuer, H., Krsek, M., Baker, P., Smalla, K., and Wellington, E. M. H. (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63, 3233–3241.

    PubMed  CAS  Google Scholar 

  6. Ovreas, L., Forney, L., Daae, F. L., and Torsvik, V. (1997) Distribution of bacterioplankton in meromictic lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367–3373.

    PubMed  CAS  Google Scholar 

  7. Wawer, C., Jetten, M. S. M., and Muyzer, G. (1997) Genetic diversity and expression of the [NiFe] hydrogenase large subunit gene of Desulfovibrio spp. in environmental samples. Appl. Environ. Microbiol. 63, 4360–4369.

    PubMed  CAS  Google Scholar 

  8. Niemi, R. M., Heiskanen, I., Wallenius, K., and Lindstrom, K. (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J. Microbiol. Methods 45, 155–165.

    Article  Google Scholar 

  9. Wagner, R. (1994) The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch. Microbiol. 161, 100–106.

    Article  PubMed  CAS  Google Scholar 

  10. Don, R. H., Cox, P. T., Wainwright, B. J., Baker, P., and Mattick, J. S. (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008.

    Article  PubMed  CAS  Google Scholar 

  11. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Saxman, P. R., Farris, R. J., et al. (2001) The RDP-II (Ribosome Database Project). Nucleic Acids Res. 29, 173–174.

    Article  PubMed  CAS  Google Scholar 

  12. Ashelford, K. E., Weightman, A. J., and Fry, J. C. (2002) PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res. 30, 3481–3489.

    Article  PubMed  CAS  Google Scholar 

  13. Watanabe, K., Kodama, Y., Syutsubo, K., and Harayama, S. (2000) Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Appl. Environ. Microbiol. 66, 4803–4809.

    Article  PubMed  CAS  Google Scholar 

  14. McCaig, A. E., Glover, L. A., and Prosser, J. I. (2001) Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl. Environ. Microbiol. 67, 4554–4559.

    Article  PubMed  CAS  Google Scholar 

  15. Felske, A., Rheims, H., Wolterink, A., Stackebrandt, E., and Akkerman, A. D. L. (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143, 2983–2989.

    Article  PubMed  CAS  Google Scholar 

  16. Ovreas, L. and Torsvik, V. (1998) Microbial diversity and community structure in two different agricultural soil communities. Microb. Ecol. 36, 303–315.

    Article  PubMed  CAS  Google Scholar 

  17. Rolleke, S., Muyzer, G., Wawer, C., Wanner, G., and Lubitz, W. (1996) Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 62, 2059–2065.

    PubMed  CAS  Google Scholar 

  18. Whiteley, A. S. and Bailey, M. J. (2000) Bacterial community structure and physiology state within an industrial phenol bioremediation system. Appl. Environ. Microbiol. 66, 2400–2407.

    Article  PubMed  CAS  Google Scholar 

  19. Tresse, O., Lorrain, M. J., and Rho, D. (2002) Population dynamics of free-floating and attached bacteria in a styrene-degrading biotrickling filter analyzed by denaturing gradient gel electrophoresis. Appl. Microbiol. Biotechnol. 59, 585–590.

    Article  PubMed  CAS  Google Scholar 

  20. MacNaughton, S. J., Stephen, J. R., Venosa, A. D., Davis, G. A., Chang, Y.-J., and White, D. C. (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65, 3566–3574.

    PubMed  CAS  Google Scholar 

  21. Henckel, T., Friedrich, M., and Conrad, R. (1999) Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol. 65, 1980–1990.

    PubMed  CAS  Google Scholar 

  22. Rochelle, P. A., Cragg, B. A., Fry, J. C., Parkes, R. J., and Weightman, A. J. (1994) Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol. Ecology 15, 215–226.

    Article  CAS  Google Scholar 

  23. Wintzingerode, F. V., Gobel, U. B., and Stackebrandt, E. (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213–229.

    Article  Google Scholar 

  24. Suzuki, M. T. and Giovannoni, S. J. (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62, 625–630.

    PubMed  CAS  Google Scholar 

  25. Wang, G. C. Y. and Wang, Y. (1996) The frequency of chimeric molecules as a consequence of PCR co-amplification of 16S rRNA genes from different bacterial species. Microbiology 142, 1107–1114.

    Article  PubMed  CAS  Google Scholar 

  26. Kundig, C., Beck, C., Hennecke, H., and Gottfert, M. (1995) A single rRNA gene region in Bradyrhizobium japonicum. J. Bacteriol. 177, 5151–5154.

    PubMed  CAS  Google Scholar 

  27. Stewart, G. C., Wilson, F. E., and Bott, K. F. (1982) Detailed physical mapping of the ribosomal RNA genes of Bacillus subtilis. Gene 19, 153–162.

    Article  PubMed  CAS  Google Scholar 

  28. Nubel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R. I., Ludwig, W., and Backhaus, H. (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178, 5636–5643.

    PubMed  CAS  Google Scholar 

  29. Jaspers, E. and Overmann, J. (1997) Separation of bacterial cells by isolelectric focusing, a new method for analysis of complex microbial communities. Appl. Environ. Microbiol. 63, 3176–3181.

    PubMed  CAS  Google Scholar 

  30. Holben, W. E. and Harris, D. (1995) DNA-based monitoring of total bacterial community structure in environmental samples. Mol. Ecol. 4, 627–631.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Eyers, L., Agathos, S.N., El Fantroussi, S. (2004). Denaturing Gradient Gel Electrophoresis (DGGE) as a Fingerprinting Tool for Analyzing Microbial Communities in Contaminated Environments. In: Walker, J.M., Spencer, J.F.T., Ragout de Spencer, A.L. (eds) Environmental Microbiology. Methods in Biotechnology, vol 16. Humana Press. https://doi.org/10.1385/1-59259-765-3:407

Download citation

  • DOI: https://doi.org/10.1385/1-59259-765-3:407

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-116-5

  • Online ISBN: 978-1-59259-765-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics