Skip to main content

Herpesviruses

A Brief Overview

  • Protocol
Bacterial Artificial Chromosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 256))

  • 1151 Accesses

Abstract

Herpesviruses have been detected in a vast variety of vertebrate species and in at least one invertebrate. It is anticipated that the approx 120 different herpesviruses known today represents only a fraction of the number that actually exists (1). Each virus is closely associated with its main host species. This hostspecific occurrence indicates that the herpesviruses have evolved with their hosts over long periods of time. Interestingly, many herpesviruses seem to be entirely avirulent within their original hosts. In contrast, upon infection of foreign hosts, i.e., those who did not participate during the process of coevolution, dramatic, often lethal diseases may occur (2,3). However, many herpesviruses are associated with various degrees of disease in their original host. The potential of herpesviruses to infect a broad range of host cells and to either induce or distract immune reactions makes them interesting entities to study in the context of both, development of new vaccines and vectors for gene therapy (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minson, A. C., Davison, A., Eberle, R., et al. (2000) Family Herpesviridae, in Virus Taxonomy, (Van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., et al., eds.), Academic, San Diego, CA, pp. 203–225.

    Google Scholar 

  2. Ackermann, M. (2001) Visions of the future of veterinary virology. Vet. Sci. Tomorrow Isssue 1, http://www.vetscite.org/cgi-bin/pw.exe/vst/reviews/index.htm.

  3. Ackermann, M., Engels, M., Fraefel, C., et al. (2002) Herpesviruses: balance in power and powers imbalanced. Vet. Microbiol. 86, 175–181.

    Article  PubMed  Google Scholar 

  4. Roizman, B. and Pellett, P. E. (2001) in Fields Virology, 4th edition, ch. 71, Lippincott Williams & Wilkins, Philadelphia, PA, pp. 2381–2397.

    Google Scholar 

  5. Shukla, D., Liu, J., Blaiklock, P., et al. (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99, 13–22.

    Article  PubMed  CAS  Google Scholar 

  6. Shukla, D., Rowe, C. L., Dong, Y., Racaniello, V. R., and Spear, P. G. (1999) The murine homolog (Mph) of human herpesvirus entry protein B (HveB) mediates entry of pseudorabies virus but not herpes simplex virus types 1 and 2. J. Virol. 73, 4493–4497.

    PubMed  CAS  Google Scholar 

  7. Cohen, J. I. and Straus, S. E. (2001) in Fields Virology, 4th edition, ch. 78, Lippincott Williams & Wilkins, Philadelphia, PA, pp. 2787–2730.

    Google Scholar 

  8. Adlish, J. D., Lahijani, R. S., and St. Jeor, S. C. (1990) Identification of a putative cell receptor for human cytomegalovirus. Virology 176, 337–3345.

    Article  PubMed  CAS  Google Scholar 

  9. Boyle, K. A., Pietropaolo, R. L., and Compton, T. (1999) Engagement of the cellular receptor for glycoprotein B of human cytomegalovirus activates the interferon-responsive pathway. Mol. Cell. Biol. 19, 3607–3613.

    PubMed  CAS  Google Scholar 

  10. Santoro, F., Kennedy, P. E., Locatelli, G., Malnati, M. S., Berger, E. A., and Lusso, P. (1999) CD46 is a cellular receptor for human herpesvirus 6. Cell 99, 817–827.

    Article  PubMed  CAS  Google Scholar 

  11. Yasukawa, M., Inoue, Y., Ohminami, H., et al. (1997) Human herpesvirus 7 infection of lymphoid and myeloid cell lines transduced with an adenovirus vector containing the CD4 gene. J. Virol. 71, 1708–1712.

    PubMed  CAS  Google Scholar 

  12. Carel, J. C., Myones, B. L., Frazier, B., and Holers, V. M. (1990) Structural requirements for C3d,g/Epstein-Barr virus receptor (CR2/CD21) ligand binding, internalization, and viral infection. J. Biol. Chem. 265, 12,293–12,299.

    PubMed  CAS  Google Scholar 

  13. Hüssy, D., Stäuber, N., Leutenegger, C. M., Rieder, S., and Ackermann, M (2001) Quantitative fluorogenic PCR assay for measuring Ovine herpesvirus 2 replication in sheep. Clin. Diagn. Lab. Immunol. 8, 123–128.

    PubMed  Google Scholar 

  14. Moore, P. S. and Chang, Y. (2001) Kaposi’s Sarcoma-associated herpesvirus, in Fields Virology, 4th edition, ch. 82, Lippincott Williams & Wilkins, Philadelphia, PA, pp. 2803–2833.

    Google Scholar 

  15. Roizman, B. and Knipe, D. M. (2001) in Fields Virology 4th edition, ch. 72, Lippincott Williams & Wilkins, Philadelphia, PA, pp. 2399–2459.

    Google Scholar 

  16. Wild, P., Schraner, E. M., Peter, J., Loepfe, E., and Engels, M. (1998) Novel entry pathway of Bovine herpesvirus 1 and 5. J. Virol. 72, 9561–9566.

    PubMed  CAS  Google Scholar 

  17. Compton, T., Nepomuceno, R. R., and Nowlin, D. M. (1992) Human cytomegalovirus penetrates host cells by pH-independent fusion at the cell surface. Virology 191, 387–395.

    Article  PubMed  CAS  Google Scholar 

  18. Cirone, M., Zompetta, C., Angeloni, A., et al. (1992) Infection by human herpesvirus 6 (HHV-6) of human lymphoid T cells occurs through an endocytic pathway. AIDS Res. Hum. Retrov. 8, 2031–2037.

    Article  CAS  Google Scholar 

  19. Kieff, E. and Rickinson, A. B. (2001) in Fields Virology 4th edition, ch. 74, Lippincott Williams & Wilkins, Philadelphia, PA, pp. 2511–2573.

    Google Scholar 

  20. Ye, G. J., Vaughan, K. T., Vallee, R. B., and Roizman, B. (2000) The herpes simplex virus 1 UL34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane. J. Virol. 74, 1355–1363.

    Article  PubMed  CAS  Google Scholar 

  21. Purves, F. C., Spector, D., and Roizman, B. (1992) UL34, the target of the herpes simplex virus U(S)3 protein kinase, is a membrane protein which in its unphosphorylated state associates with novel phosphoproteins. J. Virol. 66, 4295–4303.

    PubMed  CAS  Google Scholar 

  22. Baer, R., Bankier, A. T., Biggin, M. D., et al. (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207–211.

    Article  PubMed  CAS  Google Scholar 

  23. Chee, M. S., Bankier, A. T., Beck, S., et al. (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol. 154, 125–169.

    PubMed  CAS  Google Scholar 

  24. Davison A. J. and Scott J. E. (1986) The complete DNA sequence of varicellazoster virus. J. Gen. Virol. 67, 1759–1816.

    Article  PubMed  CAS  Google Scholar 

  25. Ensser, A., Pflanz, R., and Fleckenstein, B. (1997) Primary structure of the Alcelaphine herpesvirus 1 genome. J. Virol. 71, 6517–6525.

    PubMed  CAS  Google Scholar 

  26. McGeoch, D. J., Dalrymple, M. A., Davison, A. J., et al. (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 69, 1531–1574.

    Article  PubMed  CAS  Google Scholar 

  27. Russo, J. J., Bohenzky, R. A., Chien, M. C., et al. (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Nat. Acad. Sci. 93, 14,862–14,867.

    Article  PubMed  CAS  Google Scholar 

  28. Virgin, H. W., Latreille, P., Wamsley, P., et al. (1997) Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol. 71, 5894–5904.

    PubMed  CAS  Google Scholar 

  29. Garber, D. A., Beverley, S. M., and Coen, D.M. (1993) Demonstration of circularization of herpes simplex virus DNA following infection using pulsed field gel electrophoresis. J. Virol. 197, 459–462.

    Article  CAS  Google Scholar 

  30. Honess, R. W. and Roizman, B. (1974) Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J. Virol. 14, 8–19.

    PubMed  CAS  Google Scholar 

  31. Honess, R. W. and Roizman, B. (1975) Regulation of herpesvirus macromolecular synthesis. Sequential transition of polypeptide synthesis requires functional viral polypeptides. Proc. Natl. Acad. Sci. 72, 1276–1280.

    Article  PubMed  CAS  Google Scholar 

  32. Hardwicke, M. A. and Sandri-Goldin, R. M. (1994) The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J. Virol. 68, 4797–4810.

    PubMed  CAS  Google Scholar 

  33. Hardy, W. R. and Sandri-Goldin, R. M. (1994) Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J. Virol. 68, 7790–7799.

    PubMed  CAS  Google Scholar 

  34. Berger, C., Xuereb, S., Johnson, D. C., et al. (2000) Expression of herpes simplex virus ICP48 and human cytomegalovirus US11 prevents recognition of transgene products by CD8(+) cytotoxic T lymphocytes. J. Virol. 74, 4465–4483.

    Article  PubMed  CAS  Google Scholar 

  35. Tomazin, R., van Schoot, N. E., Goldsmith, K., et al. (1998) Herpes simplex virus type 2 ICP47 inhibits human TAP but not mouse TAP. J. Virol. 72, 2560–2563.

    PubMed  CAS  Google Scholar 

  36. York, I. A., Roop, C., Andrews, D. W., Riddell, S. R., Graham, F. L., and Johnson, D. C. (1994) A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77, 525–535.

    Article  PubMed  CAS  Google Scholar 

  37. Mocarski, E. S. and Courcelle, C. T. (2001) in Fields Virology 4th edition, ch. 76, Lippincott Williams & Wilkins, Philadelphia, PA, pp. 2629–2673.

    Google Scholar 

  38. Stevens, J. G., Wagner, E. K., Devi-Rao, G. B., Cook, M. L., and Feldman, L. T. (1987) RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235, 1056–1059.

    Article  PubMed  CAS  Google Scholar 

  39. Garber, D. A., Schaffer, P. A., and Knipe, D. M. (1997) LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J. Virol. 71, 5885–5893.

    PubMed  CAS  Google Scholar 

  40. Quinlan, M. P., and Chen, L. B., and Knipe, D. M. (1984) The intranuclear location of a herpes simplex virus DNA-binding protein is determined by the status of viral DNA replication. Cell 36, 857–868.

    Article  PubMed  CAS  Google Scholar 

  41. Lehman, I. R. and Boehmer, P. E. (1999) Replication of herpes simplex virus DNA. J. Biol. Chem. 274, 28,059–28,062.

    Article  PubMed  CAS  Google Scholar 

  42. Deiss, L. P., Chou, J., and Frenkel, N. (1986) Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J. Virol. 59, 605–618.

    PubMed  CAS  Google Scholar 

  43. Deiss, L.P. and Frenkel, N. (1986) Herpes simplex virus amplicon: cleavage of concatemeric DNA is linked to packaging and involves amplification of the terminally reiterated a sequence. J. Virol. 57, 933–941.

    PubMed  CAS  Google Scholar 

  44. Spaete, R. R. and Frenkel, N. (1985) The herpes simplex virus amplicon: analyses of cis-acting replication functions. Proc. Natl. Acad. Sci. 82, 694–698.

    Article  PubMed  CAS  Google Scholar 

  45. Deng, H. and Dewhurst, S. (1998) Functional identification and analysis of cis-acting sequences which mediate genome cleavage and packaging in human herpesvirus 6. J. Virol. 72, 320–329.

    PubMed  CAS  Google Scholar 

  46. Romi, H., Singer, O., Rapaport, D., and Frenkel, N. (1999) Tamplicon-7, a novel T-lymphotropic vector derived from human herpesvirus 7. J. Virol. 73, 7001–7007.

    PubMed  CAS  Google Scholar 

  47. Wang, F., Marchini, A., and Kieff, E. (1991) Epstein-Barr virus (EBV) recombinants: use of positive selection markers to rescue mutants in EBV-negative B-lymphoma cells. J. Virol. 65, 1701–1709.

    PubMed  CAS  Google Scholar 

  48. Enquist, L. W., Husak, P. J., Banfield, B. W., and Smith, G. A. (1998) Infection and spread of alphaherpesviruses in the nervous system. Adv. Virus Res. 51, 237–347.

    Article  PubMed  CAS  Google Scholar 

  49. Torrisi, M. R., Gentile, M., Cardinali, G., et al. (1999) Intracellular transport and maturation pathway of human herpesvirus 6. Virology 257, 460–471.

    Article  PubMed  CAS  Google Scholar 

  50. Roffman, E., Albert, J. P., Goff, J. P., and Frenkel, N. (1990) Putative site for the acquisition of human herpesvirus 6 virion tegument. J. Virol. 64, 6308–6313.

    PubMed  CAS  Google Scholar 

  51. Gershon, A. and Gershon, M., personal commun. 2001.

    Google Scholar 

  52. Alcami, A. and Koszinowski, H. U. (2000) Viral mechanisms of immune evasion. Trends Microbiol. 8, 410–418.

    Article  PubMed  CAS  Google Scholar 

  53. Lusso, P., De Maria, A., Malnati, M., et al. (1991) Induction of CD4 and susceptibility to HIV-1 infection in human CD8+ T lymphocytes by human herpesvirus 6. Nature 349, 533–535.

    Article  PubMed  CAS  Google Scholar 

  54. Lusso, P., Malnati, M. S., Garzino-Demo, A., Crowley, R. W., Long, E. O., and Gallo, R. C. (1993) Infection of natural killer cells by human herpesvirus 6. Nature 362, 458–462.

    Article  PubMed  CAS  Google Scholar 

  55. Browne, H., Smith, G., Beck, S., and Minson, T. (1990) A complex between the MHC class I homologue encoded by human cytomegalovirus and β2 microglobulin. Nature 347, 770–772.

    Article  PubMed  CAS  Google Scholar 

  56. Ackermann, M. (1988) The construction, characterization, and application of recombinant herpes viruses. J. Vet. Med. B35, 379–396.

    Article  Google Scholar 

  57. Morse, L. S., Buchman, T. G., Roizman, B., and Schaffer, P. A. (1977) Anatomy of herpes simplex virus DNA. IX. Apparent exclusion of some parental DNA arrangements in the generation of intertypic (HSV-1 x HSV-2) recombinants. J. Virol. 24, 231–248.

    PubMed  CAS  Google Scholar 

  58. Morse, L. S., Pereira, L., Roizman, B., and Schaffer, P. A. (1978) Anatomy of herpes simplex virus DNA. XI. Mapping of viral genes by analysis of polypeptides and functions specified by HSV-1 x HSV-2 recombinants. J. Virol. 26, 389–410.

    PubMed  CAS  Google Scholar 

  59. Mocarski, E. S., Post, L. E., and Roizman, B. (1980) Molecular engineering of the herpes simplex virus genome: Insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22, 243–255.

    Article  PubMed  CAS  Google Scholar 

  60. Post, L. E. and Roizman, B. (1981) A generalized technique for deletion of specific genes in large genomes: ALPHA gene 22 of herpes simplex virus 1 is not essential for growth. Cell 25, 227–232.

    Article  PubMed  CAS  Google Scholar 

  61. Ackermann, M., Longnecker, R., Roizman, B., and Pereira, L. (1986) Identification, properties, and gene location of a novel glycoprotein specified by herpes simplex virus 1. Virology 150, 207–220.

    Article  PubMed  CAS  Google Scholar 

  62. Jenkins, F. J., Casadaban, M. J., and Roizman, B. (1985) Application of the mini-Mu-phage for target-sequence-specific insertional mutagenesis of the herpes simplex virus genome. Proc. Natl. Acad. Sci. 82, 4773–4777.

    Article  PubMed  CAS  Google Scholar 

  63. Mavromara-Nazos, P., Ackermann, M., and Roizman, B. (1986) Construction and properties of a viable herpes simplex virus 1 recombinant lacking coding sequences of the ALPHA 47 gene. J. Virol. 60, 807–812.

    PubMed  CAS  Google Scholar 

  64. De Luca, N. A., McCarthy, A. M., and Schaffer, P. A. (1985) Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J. Virol. 56, 558–570.

    Google Scholar 

  65. Messerle, M., Crnkovic, I., Hammerschmidt, W., Ziegler, H., and Koszinowski, U.H. (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc. Natl. Acad. Sci. USA 94, 14,759–14,763.

    Article  PubMed  CAS  Google Scholar 

  66. Brune, W., Ménard, C., Heesemann, J., and Koszinowski, U. H. (2001) A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science 291, 303–305.

    Article  PubMed  CAS  Google Scholar 

  67. Strathdee, C. A. (1999) Transposing BACs to the future. Nat. Biotechnol. 17, 332–333.

    Article  PubMed  CAS  Google Scholar 

  68. DeFalco, J., Tomishima, M., Liu, H., et al. (2001) Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291, 2608–2613.

    Article  PubMed  CAS  Google Scholar 

  69. Tobler, K., Fraefel, C., and Ackermann, M. (submitted) Amplicon-mediated Cre-ation of mutagenized BHV-1. Submitted to J. Virol.

    Google Scholar 

  70. Saeki, Y., Fraefel, C., Ichikawa, T., Breakefield, X. O., and Chiocca, E. A. (2001) Improved helper virus-free packaging sSystem for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol. Ther. 3, 591–601.

    Article  PubMed  CAS  Google Scholar 

  71. Fraefel, C., Song, S., Lim, F., et al. (1996) Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neuronal cells. J. Virol. 70, 7190–7197.

    PubMed  CAS  Google Scholar 

  72. Wade-Martins, R., Smith, E. R., Tyminski, E., Chiocca, E. R., and Saeki, Y. (2001) An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nature Biotechnol. 19, 1067–1070.

    Article  CAS  Google Scholar 

  73. Suter, M., Lew, A. M., Grob, P., et al. (1999) BAC-VAC, a novel generation of (DNA) vaccines: a bacterial artificial chromosome (BAC) containing a replicationcompetent, packaging-defective virus genome induces protective immunity against herpes simplex virus 1. Proc. Natl. Acad. Sci. 96, 12,697–12,702.

    Article  PubMed  CAS  Google Scholar 

  74. Grillot-Courvalin, C., Goussard, S., Huetz, F., Ojcius, D. M, and Courvalin, P. (1998) Functional gene transfer from intracellular bacteria to mammalian cells. Nature Biotechnol. 16, 862–866.

    Article  CAS  Google Scholar 

  75. Britt, W. J. (2000) Infectious clones of herpesviruses: a new approach for understanding viral gene function. Trends Microbiol. 8, 262–265.

    Article  PubMed  CAS  Google Scholar 

  76. Saeki, Y., Ichikawa, T., Saeki, A., et al. (1998) Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum. Gene Ther. 9, 2787–2794.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ackermann, M. (2004). Herpesviruses. In: Zhao, S., Stodolsky, M. (eds) Bacterial Artificial Chromosomes. Methods in Molecular Biology, vol 256. Humana Press. https://doi.org/10.1385/1-59259-753-X:199

Download citation

  • DOI: https://doi.org/10.1385/1-59259-753-X:199

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-989-6

  • Online ISBN: 978-1-59259-753-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics