Skip to main content

In Vivo Mapping of Nucleosomes Using Psoralen-DNA Crosslinking and Primer Extension

  • Protocol
Chromatin Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 119))

  • 2293 Accesses

Abstract

In the nucleus of eukaryotic cells, DNA is packaged into a nucleoprotein complex known as chromatin (1). This complex provides the compaction and structural organization of the DNA for processes such as replication, transcription, recombination, and repair. The highly compact structure of chromatin does not only restrict the access of DNA to enzymes and regulating factors, it can even act as an activating principle bringing distant DNA-protein binding sites into close proximity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wolffe, A. (1992) In Chromatin: Structure and Function. Academic Press, London and New York.

    Google Scholar 

  2. Kladde, M. P., Xu, M., and Simpson, R. T. (1997) Direct study of DNA-protein interactions in repressed and active chromatin in living cells. EMBO J. 15, 6290–6300.

    Google Scholar 

  3. Thoma, F. and Sogo, J. M. (1988) In Chromosomes and Chromatin. CRC Press, Boca Raton, FL, pp. 85–107.

    Google Scholar 

  4. Sogo, J. M. and Thoma, F. (1989) In Methods in Enzymology (Wassermann, P. M. and Kornberg, R. D., eds.), 170, pp. 142–165.

    Google Scholar 

  5. Lucchini, R. and Sogo, J. M. (1998) Transcription of ribosomal RNA genes by eukaryotic RNA polymerase I (Paule, M. R., ed.) Landes Bioscience, pp. 255–276.

    Google Scholar 

  6. Hanson, C., Shen, C., and Hearst, J. (1976) Cross-linking of DNA in situ as a probe for chromatin structure. Science 193, 62–64.

    Article  PubMed  CAS  Google Scholar 

  7. Conconi, A., Losa, R., Koller, T., and Sogo, J. (1984) Psoralen-crosslinking of soluble and of H1-depleted soluble rat liver chromatin. J. Mol. Biol. 178, 920–928.

    Article  PubMed  CAS  Google Scholar 

  8. Sogo, J., Stahl, H., Koller, T., and Knippers, R. (1986) Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol. 189, 189–204.

    Article  PubMed  CAS  Google Scholar 

  9. Widmer, R. M., Koller, T., and Sogo, J. M. (1988) Analysis of the psoralen-crosslinking pattern in chromatin DNA by exonuclease digestion. Nucleic Acids Res. 16, 7013–7024.

    Article  PubMed  CAS  Google Scholar 

  10. Gasser, R., Koller, T., and Sogo, J. M. (1996) The stability of nucleosomes at the replication fork. J. Mol. Biol., 258, 224–239.

    Article  PubMed  CAS  Google Scholar 

  11. Sogo, J. M. and Lasky, R. A. (1995) In Chromatin Structure and Gene Expression (Elgin, S., ed.), Oxford University Press, pp. 49–70.

    Google Scholar 

  12. Conconi, A., Widmer, R., Koller, T., and Sogo, J. (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57, 753–761.

    Article  PubMed  CAS  Google Scholar 

  13. Sargan, D. and Butterworth, P. (1982) Eukaryotic ternary transcription complexes. II. An approach to the determination of chromatin conformation at the site of transcription. Nucleic Acids Res. 10, 4655–4669.

    Article  PubMed  CAS  Google Scholar 

  14. De Bernardin, W., Koller, T., and Sogo, J. (1986) Structure of in-vivo transcribing chromatin as studied in simian virus 40 minichromosomes. J. Mol. Biol. 191, 469–482.

    Article  PubMed  Google Scholar 

  15. Gruss, C., Wu, J., Koller, T., and Sogo, J. M. (1993) Disruption of the nucleosomes at the replication fork. EMBO J. 12, 4533–4545.

    PubMed  CAS  Google Scholar 

  16. Zhen, W.-P., Buchardt, O., Nielsen, H., and Nielsen, P. E. (1986) Site-specificity of psoralen-DNA interstrand cross-linking determined by nuclease Bal31 digestion. Biochemistry 25, 6598–6603.

    Article  PubMed  CAS  Google Scholar 

  17. Ostrander, E. A., Karty, R. A., and Hallick, L. M. (1988) High resolution psoralen mapping reveals an altered DNA helical structure in the SV 40 regulatory region. Nucleic Acids Res. 16, 212–227.

    Article  Google Scholar 

  18. Kochel, T. J. and Sinden, R. R. (1989) Hyperreactivity of B-Z junctions to 4,5′,8-trimethylpsoralen photobinding assayed by an exonuclease III/photoreversal mapping procedure. J. Mol. Biol. 205, 91–102.

    Article  PubMed  CAS  Google Scholar 

  19. Thoma, F. (1986) Protein-DNA interactions and NSRs determine nucleosome positions on yeast plasmid chromatin. J. Mol. Biol. 190, 177–190.

    Article  PubMed  CAS  Google Scholar 

  20. Tanaka, S., Livingstone, M., and Thoma, F. (1996) Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context. J. Mol. Biol. 257, 919–934.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Wellinger, R.E., Lucchini, R., Dammann, R., Sogo, J.M. (1999). In Vivo Mapping of Nucleosomes Using Psoralen-DNA Crosslinking and Primer Extension. In: Becker, P.B. (eds) Chromatin Protocols. Methods in Molecular Biology™, vol 119. Humana Press. https://doi.org/10.1385/1-59259-681-9:161

Download citation

  • DOI: https://doi.org/10.1385/1-59259-681-9:161

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-665-9

  • Online ISBN: 978-1-59259-681-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics