Skip to main content

Synthesis of Cell-Penetrating Peptide-PNA Constructs

  • Protocol
  • 718 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 208))

Abstract

Small synthetic molecules that can specifically inhibit translation or transcription hold great promise as potential antisense and antigene drugs. The polyamide/peptide nucleic acid (PNA) (1), along with locked (2) and morpholino (3) nucleic acids, is one of the most promising synthetic DNA mimics for these “antisense applications.” Extremely high stability in biological fluids (4) as well as in vivo conditions in general, low toxicity, strong and specific pairing with complementary single stranded RNA/DNA are the main advantages of PNA. The heteroduplexes of PNA with RNA or with DNA have remarkably higher stability as compared to naturally occurring homo- or heteroduplexes of RNA and DNA (5). High thermal stability of PNA-containing duplexes is mainly based on the lack of intra-molecular electrostatic repulsion, but also on hydrophobic interactions and less favorable hydration (6).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nielsen P. E., Egholm M., Berg R. H., and Buchardt O. (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500.

    Article  PubMed  CAS  Google Scholar 

  2. Wahlestedt C., Salmi P., Good L., Kela J., Johnsson T., Hökfelt T., et al. (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc. Natl. Acad. Sci. USA 97, 5633–5638.

    Article  PubMed  CAS  Google Scholar 

  3. Summerton J. (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim. Biophys. Acta 1489, 141–158.

    PubMed  CAS  Google Scholar 

  4. Demidov V. V., Potaman V. N., Frank-Kamenetskii M. D., Egholm M., Buchard O., Sonnichsen S. H., and Nielsen P. E. (1994) Stability of peptide nucleic acids in human serum and cellular extracts.Biochem. Pharmacol. 48, 1310–1313.

    Article  PubMed  CAS  Google Scholar 

  5. Egholm M., Christensen L., Dueholm K. L., Buchardt O., Coull J., and Nielsen P. E. (1995) Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res. 23, 217–222.

    Article  PubMed  CAS  Google Scholar 

  6. Ratilainen T., Holmen A., Tuite E., Haaima G., Christensen L., Nielsen P. E., and Norden B. (1998) Hybridization of peptide nucleic acid. Biochemistry 37, 12,331–12,342.

    Article  PubMed  CAS  Google Scholar 

  7. Knudsen H. and Nielsen P. E. (1996) Antisense properties of duplexand triplex-forming PNAs. Nucleic Acids Res. 24, 494–500.

    Article  PubMed  CAS  Google Scholar 

  8. Bonham M. A., Brown S., Boyd A. L., Brown P. H., Bruckenstein D. A., Hanvey J. C., et al. (1995) An assessment of the antisense properties of RNase H-competent and steric-blocking oligomers. Nucleic Acids Res. 23, 1197–1203.

    Article  PubMed  CAS  Google Scholar 

  9. Hanvey J. C., Peffer N. J., Bisi J. E., Thomson S. A., Cadilla R., Josey J. A., et al. (1992) Antisense and antigene properties of peptide nucleic acids. Science 258, 1481–1485.

    Article  PubMed  CAS  Google Scholar 

  10. Lebedeva I., Benimetskaya L., Stein C. A., and Vilenchik M. (2000) Cellular delivery of antisense oligonucleotides. Eur. J. Pharm. Biopharm. 50, 101–119.

    Article  PubMed  CAS  Google Scholar 

  11. Chinnery P. F., Taylor R. W., Diekert K., Lill R., Turnbull D. M., and Lightowlers R. N. (1999) Peptide nucleic acid delivery to human mitochondria. Gene Ther. 6, 1919–1928.

    Article  PubMed  CAS  Google Scholar 

  12. Sei S., Yang Q. E., O’Neill D., Yoshimura K., Nagashima K., and Mitsuya H. (2000) Identification of a key target sequence to block human immunodeficiency virus type 1 replication within the gag-pol transframe domain. J. Virol. 74, 4621–4633.

    Article  PubMed  CAS  Google Scholar 

  13. Tyler B. M., McCormick D. J., Hoshall C. V., Douglas C. L., Jansen K., Lacy B. W., et al. (1998) Specific gene blockade shows that peptide nucleic acids readily enter neuronal cells in vivo. FEBS Lett. 421, 280–284.

    Article  PubMed  CAS  Google Scholar 

  14. Uhlmann E. (1998) Peptide nucleic acids (PNA) and PNA-DNA chimeras: from high binding affinity towards biological function. Biol. Chem. 379, 1045–1052.

    PubMed  CAS  Google Scholar 

  15. Nastruzzi C., Cortesi R., Esposito E., Gambari R., Borgatti M., Bianchi N., et al. (2000) Liposomes as carriers for DNA-PNA hybrids. J. Contr. Release 68, 237–249.

    Article  CAS  Google Scholar 

  16. Basu S. and Wickström E. (1997) Synthesis and characterization of a peptide nucleic acid conjugated to a D-peptide analog of insulin-like growth factor 1 for increased cellular uptake. Bioconjug. Chem. 8, 481–488.

    Article  PubMed  CAS  Google Scholar 

  17. Lindgren M., Hällbrink M., Prochiantz A., and Langel Ü. (2000) Cell-penetrating peptides. Trends Pharmacol. Sci. 21, 99–103.

    Article  PubMed  CAS  Google Scholar 

  18. Derossi D., Chassaing G., and Prochiantz A. (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol. 8, 84–87.

    PubMed  CAS  Google Scholar 

  19. Prochiantz A. (1996) Getting hydrophilic compounds into cells: lessons from homeopeptides. Curr. Opin. Neurobiol. 6, 629–634.

    Article  PubMed  CAS  Google Scholar 

  20. Vivés E., Brodin P., and Lebleu B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272 16,010–16,017.

    Article  PubMed  Google Scholar 

  21. Rojas M., Yao S., Donahue J. P., and Lin Y. Z. (1997) An alternative to phosphotyrosine-containing motifs for binding to an SH2 domain. Biochem. Biophys. Res. Commun. 234, 675–680.

    Article  PubMed  CAS  Google Scholar 

  22. Pooga M., Hällbrink M., Zorko M., and Langel, Ü. (1998) Cell penetration by transportan. FASEB J. 12, 67–77.

    PubMed  CAS  Google Scholar 

  23. Pooga M., Soomets U., Hällbrink M., Valkna A., Saar K., Rezaei K., et al. (1998) Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo.Nat. Biotechnol. 16, 857–861.

    Article  PubMed  CAS  Google Scholar 

  24. Soomets U., Lindgren M., Gallet X., Hällbrink M., Elmquist A., Balaspiri L., et al. (2000) Deletion analogues of transportan. Biochim. Biophys. Acta 1467, 165–176.

    Article  PubMed  CAS  Google Scholar 

  25. Bernatowicz M. S., Matsueda R., and Matsueda G. R. (1986) Preparation of Boc-[S-(3-nitro-2-pyridinesulfenyl)]-cysteine and its use for unsymmetrical disulfide bond formation. Int. J. Pept. Protein Res. 28, 107–112.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Pooga, M., Soomets, U., Bartfai, T., Langel, Ü. (2002). Synthesis of Cell-Penetrating Peptide-PNA Constructs. In: Nielsen, P.E. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 208. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-290-2:225

Download citation

  • DOI: https://doi.org/10.1385/1-59259-290-2:225

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-976-6

  • Online ISBN: 978-1-59259-290-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics