Skip to main content

Formation of Extrachromosomal DNA Rings in Saccharomyces cerevisiae Using Site-Specific Recombination

  • Protocol
  • First Online:
DNA Topoisomerase Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 94))

  • 1023 Accesses

Abstract

A hindrance to the study of structure and function of DNA elements is that sites of interest always lie within the context of other DNA sequences. This is particularly limiting when attempting to examine elements embedded within chromosomes inside intact cells. Analysis of the Saccharomyces cerevisiae genome has shown that genes are densely packed and dispersed among multiple replication origins, as well as other functional loci. The importance of context is exemplified by the phenomenon of transcriptional silencing, where regions of inactive chromatin repress the expression of proximal genes. A solution to the problem of context has been to relocate elements of interest to naturally occurring or synthetic plasmids. Though small in size and simple in organization, biologically sustainable plasmids are still complex. Shuttle vectors used in both yeast and bacteria must contain sequences necessary for replication and selection in both hosts. Many shuttle vectors also contain an additional DNA element that determines whether the plasmid will be maintained at high or low copy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haber, J. E. (1995) In vivo biochemistry: physical monitoring of recombination by site-specific endonucleases. Bioessays 17, 609–620.

    Article  CAS  Google Scholar 

  2. Gartenberg, M. R. and Wang, J. C. (1993) Identification of barriers to rotation of DNA segments in yeast from the topology of DNA rings excised by an inducible site-specific recombinase. Proc. Natl. Acad. Sci. USA 90, 10,514–10,518.

    Article  CAS  Google Scholar 

  3. Golic, K. G. and Lindquist, S. (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509.

    Article  CAS  Google Scholar 

  4. Matsuzaki, H., Nakajima, R., Nishiyama, J., Araki, H., and Oshima, Y. (1990) Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J. Bacteriol. 172, 610–618.

    Article  CAS  Google Scholar 

  5. Qin, M., Bayley, C., Stockton, T., and Ow, D. W. (1996) Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc. Natl. Acad. Sci. USA 91, 1706–1710.

    Article  Google Scholar 

  6. Roca, J., Gartenberg, M. R., Oshima, Y., and Wang, J. C. (1992) A hit-and-run system for targeted genetic manipulations in yeast. Nucleic Acids Res. 20, 4671–4672.

    Article  CAS  Google Scholar 

  7. O’Gorman, S., Fox, D. T., and Wahl, G. M. (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251, 1351–1355.

    Article  Google Scholar 

  8. Walters, M. C., Magis, W., Fiering, S., Eidemiller, J., Scalzo, D., Groudine, M., and Martin, D. I. K. (1996) Transcriptional enhancers act in cis to suppress position-effect variegation. Genes Dev. 10, 185–195.

    Article  CAS  Google Scholar 

  9. Gu, H., Marth, J. D., Orban, P. C., Mossman, H., and Rajewsky, K. (1994) Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106.

    Article  CAS  Google Scholar 

  10. Kühn, R., Schwenk, F., Aguet, M., and Rajewsky, K. (1995) Inducible gene targeting in mice. Science 269, 1427–1431.

    Article  Google Scholar 

  11. Kilby, N. J., Snaith, M. R., and Murray, J. A. H. (1993) Site-specific recombinases: tools for genome engineering. Trends Genet. 9, 413–421.

    Article  CAS  Google Scholar 

  12. Sauer, B. (1994) Site-specific recombination: developments and applications. Curr. Opin. Biotechnol. 5, 521–527.

    Article  CAS  Google Scholar 

  13. Argos, P., Landy, A., Abremski, K., Egan, J. B., Haggard-Ljungquist, E., Hoess, R. H., Kahn, M. L., Kalionis, B., Narayama, S. V., Pierson, L. S., III, Sternberg, N., and Leong, J. M. (1986) The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 5, 433–440.

    Article  CAS  Google Scholar 

  14. Murray, J. A. H., Cesareni, G., and Argos, P. (1988) Unexpected divergence and molecular coevolution in yeast plasmids. J. Mol. Biol. 200, 601–607.

    Article  CAS  Google Scholar 

  15. Araki, H., Nakanishi, N., Evans, B. R., Matsuzaki, H., Jayaram, M., and Oshima, Y. (1992) Site-specific recombinase, R, encoded by yeast plasmid pSR1. J. Mol. Biol. 225, 25–37.

    Article  CAS  Google Scholar 

  16. Sauer, B. (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7, 2087–2096.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Broach, J. R. and Volkert, F. C. (1991). Circular DNA plasmids of yeast, in The Molecular and Cellular Biology of Yeast Saccharomyces: Genome Dynamics, Protein Synthesis, and Energetics (Broach, J. R., Jones, E. W., and Pringle, J., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 297–331.

    Google Scholar 

  18. Hildebrandt, E. R. and Cozzarelli, N. R. (1995) Comparison of recombination in vitro and in E. coli cells: measure of the effective concentration of DNA in vivo. Cell 81, 331–340.

    Article  CAS  Google Scholar 

  19. Logie, C. and Stewart, A. F. (1995) Ligand-regulated site-specific recombination. Proc. Natl. Acad. Sci. USA 92, 5940–5944.

    Article  CAS  Google Scholar 

  20. Metzger, D., Clifford, J., Chiba, H., and Chambon, P. (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 6991–1995.

    Article  CAS  Google Scholar 

  21. Konsolaki, M., Sanicola, M., Kozlova, T., Liu, V., Arca, B., Savakis, C., Gelbart, W. M., and Kafatos, F. C. (1992) FLP-mediated intermolecular recombination in the cytoplasm of Drosophila embryos. New Biol. 4, 551–557.

    CAS  PubMed  Google Scholar 

  22. Baubonis, W. and Sauer, B. (1993) Genomic targeting with purified Cre recombinase. Nucleic Acids Res. 21, 2025–2029.

    Article  CAS  Google Scholar 

  23. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1993) Current Protocols in Molecular Biology. Wiley, Media, PA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Gartenberg, M.R. (1999). Formation of Extrachromosomal DNA Rings in Saccharomyces cerevisiae Using Site-Specific Recombination. In: Bjornsti, MA., Osheroff, N. (eds) DNA Topoisomerase Protocols. Methods in Molecular Biology, vol 94. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-259-7:125

Download citation

  • DOI: https://doi.org/10.1385/1-59259-259-7:125

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-444-0

  • Online ISBN: 978-1-59259-259-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics