Skip to main content

Analysis and Use of Mutant Mice Exhibiting Natural Killer Cell Defects

  • Protocol
Natural Killer Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 121))

  • 1238 Accesses

Abstract

Natural killer (NK) cells mediate host defense through recognition and lysis of tumors, virally infected cells and “missing self” hematopoietic blast cells (1). Various in vitro experimental systems to assay NK cell function have been established, which indeed contribute to determining the functional capacities of NK cells under either normal or abnormal biological conditions. However, as our biological knowledge and technologies develop, the evaluation of NK function directly in vivo has become more essential. Because the function of each cell type within the immune network, including NK cells, is tightly interrelated, isolated cells might not exhibit normal physiological function when cultured in plastic dishes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karre K. (1993) Natural Killer cells and the MHC class I pathway of peptide resentation. Seminars in Immunol. 5, 127–145.

    Article  CAS  Google Scholar 

  2. Roder J. and Duwe A. (1979) The beige mutation in the mouse selectively mpairs natural killer cell functions. Nature 278, 451–453.

    Article  PubMed  CAS  Google Scholar 

  3. Roder J. C., Haliotis T., Klein M., Korec S., Jett J. R., Ortaldo J., Heberman Katz, P., and Fauci A. S. (1980) A new immunodeficiency disorder in humans involving NK cells. Nature 284, 553–555.

    Article  PubMed  CAS  Google Scholar 

  4. Nagle D. L., Karim M. A., Woolf E. A., Holmgren L., Bork P., Misumi D. J., McGrail S. H., Dussault B. J., Jr., Perou C. M., Boissy R. E., Duyk G. M., Spritz R. A., and Moore K. J. (1996) Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome. Nat. Genet. 14, 307–311.

    Article  PubMed  CAS  Google Scholar 

  5. Roder J. C. (1979) The beige mutation in the mouse: I. a stem cell predetermined impairment in natural killer cell function. J. Immunol. 123, 2168–2173.

    PubMed  CAS  Google Scholar 

  6. Zijlstra M., Bix M., Simister N. E., Loring J. M., Raulet D. H., and Jaenisch R. (1990). Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature 344, 742–746.

    Article  PubMed  CAS  Google Scholar 

  7. Liao N., Bix M., Zijlstra M., Jaenisch R., and Raulet D. (1991). MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 253, 199–202.

    Article  PubMed  CAS  Google Scholar 

  8. Raulet D. H., Held W., Correa I., Dorfman J. R., Wu M. F., and Corral L. (1997) Specificity, tolerance and developmental regulation of natural killer cells defined by expression of class I-specific Ly49 receptors. Immunol. Rev. 155, 41–52.

    Article  PubMed  CAS  Google Scholar 

  9. Hoglund P., Glas R., Menard C., Kase A., Johansson M. H., Franksson L., Lemmonier F., and Karre K. (1998) β2-microglobulin-deficient NK cells show increased sensitivity to MHC class I-mediated inhibition, but self tolerance does not depend upon target cell expression of H-2Kb and Db heavy chains. Eur. J. Immunol. 28, 370–378.

    Article  PubMed  CAS  Google Scholar 

  10. Triebel F., Jitsukawa S., Baixeras E., Roman-Roman S., Genevee C., ViegasPequignot E. and Hercend T. (1990) LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 171, 1393–1405.

    Article  PubMed  CAS  Google Scholar 

  11. Miyazaki T., Dierich A., Benoist C. and Mathis D. (1996) Independent modes of natural killing distinguished in Lag-3 knockout mice. Science 272, 405–408.

    Article  PubMed  CAS  Google Scholar 

  12. Baixeras E., Huard B., Miossec C., Jitsukawa S., Martin M., Hercend T., Auffray C., Triebel F. and Piatier-Tonneau D. (1992) Characterization of the lymphocyte activation gene 3 encoded protein. A new ligand for human leukocyte antigen class II antigens. J. Exp. Med. 176, 327–337.

    Article  PubMed  CAS  Google Scholar 

  13. Duncan G. S., Mittrucker H. W., Kagi D., Matsuyama T., and Mak T. W. (1996) The transcription factor interferon regulatory factor-1 is essential for natural killer cell function in vivo. J. Exp. Med. 184, 2043–2048.

    Article  PubMed  CAS  Google Scholar 

  14. Ogasawara K., Hida S., Azimi N., Tagaya Y., Sato T., Yokochi-Fukuda T., Waldmann T. A., Taniguchi T., and Taki S. (1996) Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391, 700–703.

    Google Scholar 

  15. Suzuki H., Duncan G. S., Takimoto H., and Mak T. W. (1995) Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J. Exp. Med. 185, 499–505.

    Article  Google Scholar 

  16. Cao X., Shores E. W., Hu-Li J., Anver M. R., Kelsall B. L., Russell S. M., Drago J., Noguchi M., Grinberg A., Bloom E. T., Paul W. E., Katz S. I., Love P. E., and Leonard W. J. (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity 2, 223–238.

    Article  PubMed  CAS  Google Scholar 

  17. DiSanto J. P., Muller W., Guy-Grand D., Fisher A., and Rajewsky K. (1995). Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor γ chain. Proc. Natl. Acad. Sci. USA. 92, 37–381.

    Article  Google Scholar 

  18. Ohbo K., Suda T., Hashiyama M., Mantani A., Ikebe M., Miyakawa K., Moriyama M., Nakamura M., Katsuki M., Takahashi K., Yamamura K., and Sugamura K. (1996) Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor γ chain. Blood 87, 956–967.

    PubMed  CAS  Google Scholar 

  19. Ohbo K., Suda T., Hashiyama M., Mantani A., Ikebe M., Miyakawa K., Moriyama M., Nakamura M., Katsuki M., Takahashi K., Yamamura K., and Sugamura K. (1996) Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood 87, 956–967

    PubMed  CAS  Google Scholar 

  20. Schorle H., Holtschke T., Hunig T., Schimpl A., and Horak I. (1991) Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature. 352, 621–624.

    Article  PubMed  CAS  Google Scholar 

  21. Ishida Y., Nishi M., Taguchi O., Inaba K., Hattori M., Minato N., Kawaichi M. and Honjo T. (1989) Expansion of natural killer cels but not T cells in human interleukin 2/ interleukin 2 receptor (Tac) transgenic mice. J. Exp. Med. 170, 1103–1115.

    Article  PubMed  CAS  Google Scholar 

  22. Takeda K., Tsutsui H., Yoshimoto T., Adachi O., Yoshida N., Kishimoto T., Okamura H., Nakanishi K., and Akira S. (1998) Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8, 383–390.

    Article  PubMed  CAS  Google Scholar 

  23. Kagi D., Ledermann B., Burki K., Seiler P., Odermatt B, Olsen K. J., Podack E. R., Zinkernagel R. M., and Hengartner H. (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37.

    Article  PubMed  CAS  Google Scholar 

  24. Lowin B., Beermann F., Schmidt A. and Tschopp J. (1994) A null mutation in the perforin gene impairs cytolytic T lymphocyte-and natural killer cell-mediated cytotoxicity. Proc. Natl. Acad. Sci. USA. 91, 11,571–11,575.

    Article  PubMed  CAS  Google Scholar 

  25. Walsh C. M., Matloubian M., Liu C. C., Ueda R., Kurahara C. G., Christensen J. L., Huang M. T., Young J. D., Ahmed R., and Clark W. R. (1994) Immune function in mice lacking the perforin gene. Proc. Natl. Acad. Sci. USA. 91, 10,854–10,858.

    Article  PubMed  CAS  Google Scholar 

  26. Ebnet K., Hausmann M., Lehmann-Grube F., Mullbacher A., Kopf M., Lamers M., an Simon M. M. (1995) Granzyme A-deficient mice retain potent cell-mediated cytotoxicity. EMBO J. 14, 4230–4239.

    PubMed  CAS  Google Scholar 

  27. Heusel J. W., Wesselschmidt R. L., Shresta S., Russell J. H., and Ley T. J. (1994). Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell. 76, 977–987.

    Article  PubMed  CAS  Google Scholar 

  28. Simon M. M., Hausmann M., Tran T., Ebnet K., Tschopp J., ThaHla R., and Mullbacher A. (1997) In vitro-and ex vivo-derived cytolytic leukocytes from granzyme A x B double knockout mice are defective in granule-mediated apoptosis but not lysis of target cells. J. Exp. Med. 186, 1781–1786.

    Article  PubMed  CAS  Google Scholar 

  29. Lee R. K., Spielman J., Zhao D. Y., Olsen K. J., and Podack E. R. (1996) Perforin, Fas ligand, and tumor necrosis factor are the major cytotoxic molecules used by lymphokine-activated killer cells. J. Immunol. 157, 1919–1925.

    PubMed  CAS  Google Scholar 

  30. Georgopoulos K., Bigby M., Wang J. H., Molnar A., Wu P., Winandy S., and Sharpe A. (1994). The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156.

    Article  PubMed  CAS  Google Scholar 

  31. Wang J. H., Nichogiannopoulou A. Wu L., Sun L., Sharpe A. H., Bigby M., and Georgopoulos K. (1996). Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity. 5, 537–549.

    Article  PubMed  CAS  Google Scholar 

  32. Schuler W., Weiler I. J., Schuler A., Phillips R. A., Rosenberg N., Mak T. W., Kearney J. F., Perry R. P., and Bosma M. J. (1986) Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell 46, 963–972.

    Article  PubMed  CAS  Google Scholar 

  33. Shinkai Y., Rathbun G., Lam K. P., Oltz E. M., Stewart V., Mendelsohn M., Charron J., Datta M., Young F., Stall A. M., et al. (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867.

    Article  PubMed  CAS  Google Scholar 

  34. Mombaerts P., Iacomini J., Johnson R. S., Herrup K., Tonegawa S., and Papaioannou V. E. (1992) RAG-1-deficient mice have no mature B and T lymhocytes. Cell 68, 869–877.

    Article  PubMed  CAS  Google Scholar 

  35. Kirchgessner C. U., Patil C. K., Evans J. W., Cuomo C. A., Fried L. M., Carter T., Oettinger M. A., and Brown J. M. (1995) DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267, 1178–1183.

    Article  PubMed  CAS  Google Scholar 

  36. Blunt T., Finnie N. J., Taccioli G. E., Smith G. C., Demengeot J., Gottlieb T. M., Mizuta R., Varghese A. J., Alt F. W., Jeggo P. A., and Jackson S. P. (1995) Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80, 813–823.

    Article  PubMed  CAS  Google Scholar 

  37. Wang B., Biron C., She J., Higgins K., Sunshine M. J., Lacy E., Lonberg N., and Terhorst C. (1994) A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the human CD3ε gene. Proc. Natl. Acad. Sci. USA 91, 9402–9406.

    Article  PubMed  CAS  Google Scholar 

  38. Ceredig R., Lowenthal J. W., Nabholz M., and MacDonald H. R. (1985) Expression of interleukin-2 receptors as a differentiation marker on intrathymic stem cells. Nature 314, 98–100.

    Article  PubMed  CAS  Google Scholar 

  39. Symington F. W. and Sprent J. (1981). A monoclonal antibody detecting an Ia specificity mapping in the I-A or I-E subregion. Immunogenetics. 14, 53–61.

    Article  PubMed  CAS  Google Scholar 

  40. Sarmiento M., Glasebrook A. L., and Fitch F. W. (1980). IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement. J. Immunol. 125, 2665–2672.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Miyazaki, T., Campbell, K.S. (1999). Analysis and Use of Mutant Mice Exhibiting Natural Killer Cell Defects. In: Campbell, K.S., Colonna, M. (eds) Natural Killer Cell Protocols. Methods in Molecular Biology, vol 121. Humana Press. https://doi.org/10.1385/1-59259-044-6:323

Download citation

  • DOI: https://doi.org/10.1385/1-59259-044-6:323

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-683-3

  • Online ISBN: 978-1-59259-044-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics