Skip to main content

Design of Bacterial Hosts for lac-Based Expression Vectors

  • Protocol
Recombinant Gene Expression Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 62))

  • 1621 Accesses

Abstract

Since introduction of the first pUC plasmids (1), a great variety of plasmid vectors that use α-complementation and expression from the lac promoter, or its derivatives tac and trc promoters, have been developed (e.g., see refs. 214). In order to maximize utilization of these vectors, various Escherichia coli host strains have been designed which contain the lacZΔM15 allele (15) necessary for α-complementation and the lacI q (16,17) gene, which allows for overproduction of the lac repressor that is required for regulated expression from the lac promoter. The development of F episomes (7,14,18) or phages (1,19) containing these components facilitated the construction of various host strains, provided they do not express β-galactosidase (e.g., Δlac strains). However, these systems suffer from several short-comings that restrict their use:

  1. 1.

    Unless the episomes contain transposon-encoded antibiotic resistance markers (usually kanamycin or tetracycline), which also excludes their use in Tn5- or Tn10-containing strains, other commonly used F episomes require minimal medium for their maintenance because passage in rich media leads to their frequent loss (20),

  2. 2.

    Since the episomes and phages have been tailored for use in E. coli, they cannot be exploited for establishment of a lac-based α-complementation and regulated expression system in other bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vieira, J. and Messing, J. (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259–268.

    Article  PubMed  CAS  Google Scholar 

  2. Balbas, P., Soberón X., Merino, E., Zurita, M., Lomeli, Z., Valle, F., Flores, N., and Bolivar, F. (1986) Plasmid vector pBR322 and its special purpose derivatives—a review. Gene 50, 3–40.

    Article  PubMed  CAS  Google Scholar 

  3. Martinez, E., Bartolome, B., and de la Cruz, F. (1988) pACYC184-derived cloning vectors containing the multiple cloning site and lacZα reporter gene of pUC8/9 and pUC18/19 plasmids. Gene 68, 159–162.

    Article  PubMed  CAS  Google Scholar 

  4. Bartolomé, B., Jubete, Y., Martinez, E., and de la Cruz, F. (1991) Construction and properties of a family of pACYC 184-derived cloning vectors compatible with pBR322. Gene 102, 75–78.

    Article  PubMed  Google Scholar 

  5. Brosius, J. (1992) Compilation of superlinker vectors. Methods Enzymol. 216, 469–483.

    Article  PubMed  CAS  Google Scholar 

  6. Keen, N. T., Tamaki, S., Kobayashi, D., and Trollinger, D. (1988) Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70, 191–197.

    Article  PubMed  CAS  Google Scholar 

  7. Messing, J. (1983) New M13 vectors for cloning. Methods Enzymol. 101, 20–78.

    Article  PubMed  CAS  Google Scholar 

  8. Vieira, J. and Messing, J. (1991) New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100, 189–194.

    Article  PubMed  CAS  Google Scholar 

  9. Schweizer, H. P. (1991) Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97, 109–112.

    Article  PubMed  CAS  Google Scholar 

  10. Spratt, B. G., Hedge, P. J., te Heesen, S., Edelman, A., and Broome-Smith, J. K. (1986) Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene 41, 337–342.

    Article  PubMed  CAS  Google Scholar 

  11. Stewart, G. S. A. B., Lubinsky-Mink, S., and Kuhn, J. (1986) pHG276 a multiple cloning site pBR322 copy number vector expressing a functional lacZα peptide from the bacteriophage lambda PR promoter. Plasmid 15, 182–190.

    Article  PubMed  CAS  Google Scholar 

  12. West, S. E. H., Schweizer, H. P., Dall, C., Sample, A. K., and Runyen-Janecky, L. J. (1994) Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and the sequence of the region required for thetr replication in Pseudomonas aeruginosa. Gene 128, 81–86.

    Article  Google Scholar 

  13. Kushner, S. R. and Wang, R. F. (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100, 195–199.

    Article  PubMed  Google Scholar 

  14. Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 cloning vectors and host strains nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.

    Article  PubMed  CAS  Google Scholar 

  15. Prentki, P. (1992) Nucleotide sequence of the classical llacZ deletion ΔM15. Gene 122, 231–232.

    Article  PubMed  CAS  Google Scholar 

  16. Muller-Hill, B., Crapo, L., and Gilbert, W. (1968) Mutants that make more lac repressor. Proc. Natl. Acad. Sci. USA 59, 1259–1264.

    Article  PubMed  CAS  Google Scholar 

  17. Calos, M. (1978) DNA sequence for a low-level promoter of the lac repressor gene and an “up” promoter mutation. Nature 274, 762–765.

    Article  PubMed  CAS  Google Scholar 

  18. Bullock, W. O., Fernandez, J. M., and Short, J. M. (1987) XL1-Blue: A high efficiency plasmid transforming recA Escherichia coli strain with Beta-galactosidase selection. BioTechniques 5, 376–379.

    CAS  Google Scholar 

  19. Liss, L. (1987) New M13 host. DHSαF′ competent cells. Focus 9, 13.

    Google Scholar 

  20. Schweizer, H. P. (1994) A method for construction of bacterial hosts for lac-based cloning and expression vectors a complementation and regulated expression. BioTechniques 17, 452–456.

    PubMed  CAS  Google Scholar 

  21. Haima, P., van Sinderen, D., Schotting, H., Bron, S., and Venema, G. (1990) Development of a β-galactosidase α-complementation system for molecular cloning in Bacillus subtilis. Gene 86, 63–69.

    Article  PubMed  CAS  Google Scholar 

  22. Haima, P., van Sinderen, D., Bron, S., and Venema, G. (1990) An improved β-galactosidase α-complementation system for molecular cloning in Bacillus subtilis. Gene 93, 41–47.

    Article  PubMed  CAS  Google Scholar 

  23. Karkhoff-Schweizer, R. R. and Schweizer, H. P. (1994) Utilization of mini-Dlac transposable element to create an α-complementation and regulated expression system for molecular cloning in Pseudomonas aeruginosa. Gene 140, 7–15.

    Article  PubMed  CAS  Google Scholar 

  24. Miller, V. L. and Mekalanos, J. J. (1988) A novel suicide vector and its use in construction of insertion mutations, osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170, 2575–2583.

    PubMed  CAS  Google Scholar 

  25. De Lorenzo, V. and Timmis, K. N. (1994) Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5 and Tn10-derived transposons. Methods Enzymol. 235, 386–405.

    Article  PubMed  CAS  Google Scholar 

  26. Berg, C. M., Berg, D. E., and Groisman, E. A. (1989) Transposable elements and the genetic engineering of bacteria, in Mobile DNA (Berg, D. E. and Howe, M., ed.), American Society for Microbiology, Washington, pp. 879–925.

    Google Scholar 

  27. Darzins, A. and Casadaban, M. J. (1989) In vivo cloning of Pseudomonas aeruginosa genes with mini-D3112 transposable bacteriophage. J. Bacteriol. 171, 3917–3925.

    PubMed  CAS  Google Scholar 

  28. Darzins, A. and Casadaban, M. J. (1989) Mini-D3112 bacteriophage transposable elements for genetic analysis of Pseudomonas aeruginosa. J. Bacteriol. 171, 3909–3916.

    PubMed  CAS  Google Scholar 

  29. Metcalf, W. W., Jiang, W., and Wanner, B. L. (1994) Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kγ origin plasmids at different copy numbers. Gene 138, 1–7.

    Article  PubMed  CAS  Google Scholar 

  30. Schweizer, H. P. and Po, C. (1994) Cloning and nucleotide sequence of the glpD gene encoding sn-glycerol-3-phosphate dehydrogenase from Pseudomonas aeruginosa. J. Bacteriol. 176, 2184–2193.

    PubMed  CAS  Google Scholar 

  31. Xiang, C., Wang, H., Shiel, P., Berger, P., and Guerra, D. J. (1994) A modified alkaline lysis miniprep protocol using a single microcentrifuge tube. BioTechniques 17, 30–31.

    PubMed  CAS  Google Scholar 

  32. Miller, J. H. (1992) P1 transduction, in A Short Course in Bacterial Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 263–278.

    Google Scholar 

  33. Taylor, L. A. and Rose, R. E. (1988) A correction in the nucleotide sequence of the Tn903 kanamycin resistance determinant in pUC4K. Nucleic Acids Res. 16, 358.

    Article  PubMed  CAS  Google Scholar 

  34. Schweizer, H. P. (1993) Small broad-host-range gentamycin resistance cassettes for site-specific insertion and deletion mutagenesis. BioTechniques 15, 831–833.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Schweizer, H.P., Karkhoff-Schweizer, R.R. (1997). Design of Bacterial Hosts for lac-Based Expression Vectors. In: Tuan, R.S. (eds) Recombinant Gene Expression Protocols. Methods in Molecular Biology, vol 62. Humana Press. https://doi.org/10.1385/0-89603-480-1:17

Download citation

  • DOI: https://doi.org/10.1385/0-89603-480-1:17

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-480-8

  • Online ISBN: 978-1-59259-548-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics