Skip to main content

An Improved Method for the Synthesis and Deprotection of Methylphosphonate Oligonucleotides

  • Protocol
Protocols for Oligonucleotides and Analogs

Abstract

The value of oligonucleotides as therapeutic agents has become increasingly apparent over the past decade (13). In order to be useful as therapeutic agents, oligonucleotides must possess a number of properties. These include:

  1. 1.

    Resistance to enzyme degradation;

  2. 2.

    The ability to enter target cells;

  3. 3.

    A lack of interference with normal DNA and RNA processing enzymes; and

  4. 4.

    The ability to bind to a target and alter its expression in a sequence-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stein, C. A. and Cohen, J. S. (1988) Oligodeoxynucleotides as inhibitors of gene expression: A Review. Cancer Res. 48, 2659–2668.

    CAS  Google Scholar 

  2. Tidd, D. M. (1991) Synthetic oligonucleotides as therapeutic agents. Br. J. Cancer 63,6–8.

    Article  CAS  Google Scholar 

  3. Riorden, M. L. and Martin, J. C. (1991) Oligonucleotide-based therapeutics. Nature 350,442,443.

    Article  Google Scholar 

  4. Miller, P. S. (1991) Oligonucleoside methylphosphonates as anti-sense reagents. Biotechnology 9, 358–362.

    Article  CAS  Google Scholar 

  5. Miller, P. S. (1989) Non-ionic antisense oligonucleotides, in Oligodeoxyribo-nucleotides: Antisense Inhibitors of Gene Expression, vol. 12, Topics in Molecular and Structural Biology (Cohen, J. S., ed.) MacMillin, London, pp. 79–95.

    Google Scholar 

  6. Blake, K. R., Murakami, A., Spitz, S. A., Glave, S. A., Reddy, M. P., Ts’o, P. O. P., and Miller, P. S. (1985) Hybridization arrest of globin synthesis in rabbit reticulocyte lysates and cells by oligodeoxyribonucleoside methylphos-phonate. Biochemistry 24,6139–6142.

    Article  CAS  Google Scholar 

  7. Chang, E. H., Zu, Y., Shinozuka, R., Zon, G., Wilson, W. D., and Strekowska, A. (1989) Comparative inhibition of ras P21 protein synthesis with phosphorus-modified antisense oligonucleotides. Anti-Cancer Drug Design 4,221–232.

    CAS  Google Scholar 

  8. Temsamani, J., Agrawal, S., and Pederson, T. (1991) Biotinylated antisense methylphosphonate oligonucleotide. J. Biol. Chem. 266,468–472.

    CAS  Google Scholar 

  9. Zamecnik, P. C, Goodchild, J., Taguchi, Y., and Sarin, P. S. (1986) Inhibition of replication and expression of human T-cell lymphotropic virus type III in cultured cells by exogenous synthetic oligonucleotides complementary to viral RNA. Proc. Natl. Acad. Sci. USA 83,4143–4146.

    Article  CAS  Google Scholar 

  10. Miller, P. S., McFarland, K. B., Jayaraman, K., and Ts’o, P. O. P. (1981) Biochemical and biological effects of non-ionic nucleic acid methylphosphonates. Biochemistry 20, 1874–1880.

    Article  CAS  Google Scholar 

  11. Marcus-Sekura, C. J., Woerner, A. M., Shinozuka, K., Zon, G., and Quinnan, G. V. (1987) Comparative inhibition of chloramphenicol acetyltransferase gene expression by antisense oligonucleotide analogues having alkyl phosphotriester, methylphosphonate and phosphorothioate linkage. Nucl. Acids Res. 15,5749–5752.

    Article  CAS  Google Scholar 

  12. Vasanthakumar, G. and Ahmed, N. K. (1989) Modulation of drug resistance in a daunorubicin resistant subline with oligonucleoside methylphosphonates. Cancer Commun. 1, 225–232.

    CAS  Google Scholar 

  13. Callahan, D. E., Trapane, T. L., Miller, P. S., Ts’o, P. O. P., and Kan, L.-S. (1991) Comparative circular dichroism and fluorescence studies of oligode-oxyribonucleotide and oligodeoxyribonucleoside methylphosphonate strands in duplex and triplex formation. Biochemistry 30, 1650–1655.

    Article  CAS  Google Scholar 

  14. Hogrefe, R. I., Vaghefi, M. M., Reynold, M. A., Young, K., and Arnold, L. J. (1992) Deprotection of methylphosphonate oligonucleotides using a novel one-pot procedure. Nucl. Acids Res. submitted.

    Google Scholar 

  15. Miller, P. S., Reddy, M. P., Murakami, A., Blake, K. R., Lin, S.-B., and Agris, C. H. (1986) Solid phase syntheses of oligodeoxyribonucleoside methylphosphonate. Biochemistry 25, 5092–5095.

    Article  CAS  Google Scholar 

  16. Letsinger, R. L., Miller, P. S., and Gram, G. W. (1968) Nucleotide chemistry. XII. Selective N-debenzoylation of N,O-polybenzoylnucleoside. Tetrahedron Lett. 22,2621–2634.

    Article  Google Scholar 

  17. Barnett, R. W. and Letsinger, R. L. (1981) Debenzoylation of N-benzoylnucle-oside derivatives withethylenediamine/phenol. Tetrahedron Lett. 22,991–994.

    Article  CAS  Google Scholar 

  18. Maher, L. J. and Dolnick, B. J. (1988) Comparative hybrid arrest by tandem antisense oligodeoxyribonucleotides or oligodeoxyribonucleoside methylphos-phonate in a cell-free system. Nucl. Acid Res. 16, 3341–3358.

    Article  CAS  Google Scholar 

  19. Agrawal, S. and Goodchild, J. (1987) Oligodeoxynucleoside methylphosphonate: Synthesis and enzymatic degradation. Tetrahedron Lett. 28,3539–3542.

    Article  CAS  Google Scholar 

  20. Sarin, P. S., Agrawal, S., Civeira, M. P., Goodchild, J. Ikeuchi, T., and Zamecnik, P. C. (1988) Inhibition of acquired immunodeficiency syndrome virus by oligonucleoside methylphosphonates. Proc. Natl. Acad. Sci. USA 85,7448–7451.

    Article  CAS  Google Scholar 

  21. Schulhof, J. C, Molko, D., and Teoule, R. (1987) The final deprotection step in oligonucleotide synthesis reduced to a mild and rapid ammonia treatment by using labile base-protection groups. Nucl. Acid Res. 15, 397–416.

    Article  CAS  Google Scholar 

  22. Ebright, Y., Tous, G. I., Tsao, J., Fausnaugh, J., and Stein, S. (1988) Chromatographic purification of non-ionic methylphosphonate oligodeoxyribonucleoside. J. Liquid Chromatogr. 11, 2005–2017.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hogrefe, R.I. et al. (1993). An Improved Method for the Synthesis and Deprotection of Methylphosphonate Oligonucleotides. In: Agrawal, S. (eds) Protocols for Oligonucleotides and Analogs. Methods in Molecular Biology, vol 20. Humana Press. https://doi.org/10.1385/0-89603-281-7:143

Download citation

  • DOI: https://doi.org/10.1385/0-89603-281-7:143

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-281-1

  • Online ISBN: 978-1-59259-507-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics