Skip to main content
Log in

T-cells in alzheimer’s disease

  • Review Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common dementing illness and is pathologically characterized by deposition of the 40–42 amino acid peptide, amyloid-β (Aβ), as senile plaques. It is well documented that brain inflammatory mechanisms mediated by reactive glia are activated in response to Aβ plaques. A number of reports further suggest that T-cells are activated in AD patients, and that these cells exist both in the periphery and as infiltrates in the brain. We explore the potential role of T-cells in the AD process, a controversial area, by reviewing reports that show disturbed activation profiles and/or altered numbers of various subsets of T-cells in the circulation as well as in the AD brain parenchyma and in cerebral amyloid angiopathy. We also discuss the recent Aβ immunotherapy approach vis-à-vis the activated, autoaggressive T-cell infiltrates that contributed to aseptic meningoencephalitis in a small percentage of patients, and present possible alternative approaches that may be both efficacious and safe. Finally, we explore the use of mouse models of AD as a system within which to definitively test the possible contribution of T-cells to AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anders K. H., Wang Z. Z., Kornfeld M., et al. (1997) Giant cell arteritis in association with cerebral amyloid angiopathy: immunohistochemical and molecular studies. Hum. Pathol. 28, 1237–1246.

    Article  PubMed  CAS  Google Scholar 

  • Archambault A. S., Sim J., Gimenez M. A., and Russell J. H. (2005) Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma. Eur. J. Immunol. 35, 1076–1085.

    Article  PubMed  CAS  Google Scholar 

  • Baril L., Nicolas L., Croisile B., et al. (2004) Immune response to Abeta-peptides in peripheral blood from patients with Alzheimer’s disease and control subjects. Neurosci. Lett. 355, 226–230.

    Article  PubMed  CAS  Google Scholar 

  • Becker K. J., McCarron R. M., Ruetzler C., et al. (1997) Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 94, 10,873–10,878.

    Article  CAS  Google Scholar 

  • Bongioanni P., Boccardi B., Borgna M., Castagna M., and Mondino C. (1997) T-cell interferon gamma binding in patients with dementia of the Alzheimer type. Arch. Neurol. 54, 457–462.

    PubMed  CAS  Google Scholar 

  • Cribbs D. H., Ghochikyan A., Vasilevko V., et al. (2003) Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with beta-amyloid. Int. Immunol. 15, 505–514.

    Article  PubMed  CAS  Google Scholar 

  • Das P., Murphy M. P., Younkin L. H., Younkin S. G., and Golde T. E. (2001) Reduced effectiveness of Abeta1-42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiol. Aging 22, 721–727.

    Article  PubMed  CAS  Google Scholar 

  • Dong C. and Flavell R. A. (2001) Th1 and Th2 cells. Curr. Opin. Hematol. 8, 47–51.

    Article  PubMed  CAS  Google Scholar 

  • Dutton R. W., Bradley L. M., and Swain S. L. (1998) T cell memory. Annu. Rev. Immunol. 16, 201–223.

    Article  PubMed  CAS  Google Scholar 

  • Ellis R. J., Olichney J. M., Thal L. J., et al. (1996) Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience, Part XV. Neurology 46, 1592–1596.

    PubMed  CAS  Google Scholar 

  • Eng J. A., Frosch M. P., Choi K., Rebeck G. W., and Greenberg S. M. (2004) Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann. Neurol. 55, 250–256.

    Article  PubMed  Google Scholar 

  • Furlan R., Brambilla E., Sanvito F., et al. (2003) Vaccination with amyloid-beta peptide induces autoimmune encephalomyelitis in C57/BL6 mice. Brain 126, 285–291.

    Article  PubMed  Google Scholar 

  • Gruden M. A., Davudova T. B., Malisauskas M., et al. (2004) Autoimmune responses to amyloid structures of Abeta(25–35) peptide and human lysozyme in the serum of patients with progressive Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 18, 165–171.

    Article  PubMed  CAS  Google Scholar 

  • Hickey W. F. (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36, 118–124.

    Article  PubMed  CAS  Google Scholar 

  • Huberman M., Sredni B., Stern L., Kott E., and Shalit F. (1995) IL-2 and IL-6 secretion in dementia: correlation with type and severity of disease. J. Neurol. Sci. 130, 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Hyman B. T., Smith C., Buldyrev I., et al. (2001) Autoantibodies to amyloid-beta and Alzheimer’s disease. Ann. Neurol. 49, 808–810.

    Article  PubMed  CAS  Google Scholar 

  • Janus C., Pearson J., McLaurin J., et al. (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408, 979–982.

    Article  PubMed  CAS  Google Scholar 

  • Jones T. B., Basso D. M., Sodhi A., et al. (2002) Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J. Neurosci. 22, 2690–2700.

    PubMed  CAS  Google Scholar 

  • Kim H. D., Cao Y., Kong F. K., et al. (2005) Induction of a Th2 immune response by co-administration of recombinant adenovirus vectors encoding amyloid beta-protein and GM-CSF. Vaccine 23, 2977–2986.

    Article  PubMed  CAS  Google Scholar 

  • Lafaille J. J. (1998) The role of helper T cell subsets in autoimmune diseases. Cytokine Growth Factor Rev. 9, 139–151.

    Article  PubMed  CAS  Google Scholar 

  • Lemere C. A., Maron R., Selkoe D. J., and Weiner H. L. (2001) Nasal vaccination with beta-amyloid peptide for the treatment of Alzheimer’s disease. DNA Cell Biol. 20, 705–711.

    Article  PubMed  CAS  Google Scholar 

  • Lemere C. A., Maron R., Spooner E. T., et al. (2000) Nasal A beta treatment induces anti-A beta antibody production and decreases cerebral amyloid burden in PD-APP mice. Ann. NY. Acad. Sci. 920, 328–331.

    Article  PubMed  CAS  Google Scholar 

  • Linton P. J., Haynes L., Klinman N. R., and Swain S. L. (1996) Antigen-independent changes in naive CD4 T cells with aging. J. Exp. Med. 184, 1891–1900.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi V. R., Fernandez-Novoa L., Etcheverria I., Seoane S., and Cacabelos R. (2004) Association between APOE epsilon4 allele and increased expression of CD95 on T cells from patients with Alzheimer’s disease. Methods Find. Exp. Clin. Pharmacol. 26, 523–529.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi V. R., Garcia M., Rey L., and Cacabelos R. (1999) Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer’s Disease (AD) individuals. J. Neuroimmunol. 97, 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Lopez O. L., Rabin B. S., and Huff F. J. (1991) Serum auto-antibodies in Alzheimer’s disease. Acta Neurol. Scand. 84, 441–444.

    Article  PubMed  CAS  Google Scholar 

  • McGeer E. G. and McGeer P. L. (1999a) Brain inflammation in Alzheimer disease and the therapeutic implications. Curr. Pharm. Des. 5, 821–836.

    PubMed  CAS  Google Scholar 

  • McGeer P. L. and McGeer E. G. (1999b) Inflammation of the brain in Alzheimer’s disease: implications for therapy. J. Leukoc. Biol. 65, 409–415.

    PubMed  CAS  Google Scholar 

  • McGeer P. L. and McGeer E. G. (2002) Innate immunity, local inflammation, and degenerative disease. Sci. Aging Knowledge Environ. 2002(29), re3.

    Google Scholar 

  • Moalem G., Leibowitz-Amit R., Yoles E., Mor F., Cohen I. R., and Schwartz M. (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Monsonego A., Imitola J., Zota V., Oida T., and Weiner H. L. (2003a) Microglia-mediated nitric oxide cytotoxicity of T cells following amyloid beta-peptide presentation to Th1 cells. J. Immunol. 171, 2216–2224.

    PubMed  CAS  Google Scholar 

  • Monsonego A., Maron R., Zota V., Selkoe D. J., and Weiner H. L. (2001) Immune hyporesponsiveness to amyloid beta-peptide in amyloid precursor protein transgenic mice: implications for the pathogenesis and treatment of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 98, 10273–10278.

    Article  PubMed  CAS  Google Scholar 

  • Monsonego A., Zota V., Karni A, et al. (2003b) Increased T cell reactivity to amyloid beta protein in older humans and patients with Alzheimer disease. J. Clin. Invest. 112, 415–422.

    Article  PubMed  CAS  Google Scholar 

  • Morgan D., Diamond D. M., Gottschall P. E., et al. (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408, 982–985.

    Article  PubMed  CAS  Google Scholar 

  • Mruthinti S., Buccafusco J. J., Hill W. D., et al. (2004) Autoimmunity in Alzheimer’s disease: increased levels of circulating IgGs binding Abeta and RAGE peptides. Neurobiol. Aging 25, 1023–1032.

    Article  PubMed  CAS  Google Scholar 

  • Myagkova M. A., Gavrilova S. I., Lermontova N. N., et al. (2003) Content of autoantibodies to bradykinin and beta-amyloid(1–42) as a criterion for biochemical differences between Alzheimer’s dementias. Bull. Exp. Biol. Med. 136, 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Nagelkerken L. (1998) Role of Th1 and Th2 cells in autoimmune demyelinating disease. Braz. J. Med. Biol. Res. 31, 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Nath A., Hall E., Tuzova M., et al. (2003) Autoantibodies to amyloid beta-peptide (A beta) are increased in Alzheimer’s disease patients and Abeta antibodies can enhance Abeta neurotoxicity: implications for disease pathogenesis and vaccine development. Neuromol. Med. 3, 29–39.

    Article  CAS  Google Scholar 

  • Nicoll J. A., Wilkinson D., Holmes C., Steart P., Markham H., and Weller R. O. (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat. Med. 9, 448–452.

    Article  PubMed  CAS  Google Scholar 

  • Peterson D. A., DiPaolo R. J., Kanagawa O., and Unanue E. R. (1999) Quantitative analysis of the T cell repertoire that escapes negative selection. Immunity 11, 453–462.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer M., Boncristiano S., Bondolfi L., et al. (2002) Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298, 1379.

    Article  PubMed  CAS  Google Scholar 

  • Qu B., Rosenberg R. N., Li L., Boyer P. J., and Johnston S. A. (2004) Gene vaccination to bias the immune response to amyloid-beta peptide as therapy for Alzheimer disease. Arch. Neurol. 61, 1859–1864.

    Article  PubMed  Google Scholar 

  • Rogers J., Luber-Narod J., Styren S. D., and Civin W. H. (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol. Aging 9, 339–349.

    Article  PubMed  CAS  Google Scholar 

  • Rogers J., Webster S., Lue L. F., et al. (1996) Inflammation and Alzheimer’s disease pathogenesis. Neurobiol. Aging 17, 681–686.

    Article  PubMed  CAS  Google Scholar 

  • Romagnani S. (1992) Human TH1 and TH2 subsets: regulation of differentiation and role in protection and immunopathology. Int. Arch. Allergy Immunol. 98, 279–285.

    Article  PubMed  CAS  Google Scholar 

  • Romagnani S. (2000) T-cell subsets (Th1 versus Th2) Ann. Allergy Asthma Immunol. 85, 9–18; quiz 18, 21.

    Article  PubMed  CAS  Google Scholar 

  • Schenk D., Barbour R., Dunn W., et al. (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Scolding N. J., Joseph F., Kirby P. A., et al. (2005) Abetarelated angiitis: primary angiitis of the central nervous system associated with cerebral amyloid angiopathy. Brain 128, 500–515.

    Article  PubMed  Google Scholar 

  • Shalit F., Sredni B., Stern L., Kott E., and Huberman M. (1994) Elevated interleukin-6 secretion levels by mononuclear cells of Alzheimer’s patients. Neurosci. Lett. 174, 130–132.

    Article  PubMed  CAS  Google Scholar 

  • Tan J., Town T., Abdullah L., et al. (2002a) CD45 isoform alteration in CD4+ T cells as a potential diagnostic marker of Alzheimer’s disease. J. Neuroimmunol. 132, 164–172.

    Article  PubMed  CAS  Google Scholar 

  • Tan J., Town T., Crawford F., et al. (2002b) Role of CD40 ligand in amyloidosis in transgenic Alzheimer’s mice. Nat. Neurosci. 5, 1288–1293.

    Article  PubMed  CAS  Google Scholar 

  • Tan J., Town T., and Mullan M. (2002c) CD40-CD40L interaction in Alzheimer’s disease. Curr. Opin. Pharmacol. 2, 445–451.

    Article  PubMed  CAS  Google Scholar 

  • Tan J., Town T., Paris D., et al. (1999a) Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science 286, 2352–2355.

    Article  PubMed  CAS  Google Scholar 

  • Tan J., Town T., Suo Z., et al. (1999b) Induction of CD40 on human endothelial cells by Alzheimer’s beta-amyloid peptides. Brain Res. Bull. 50, 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Tarkowski E., Wallin A., Regland B., Blennow K., and Tarkowski A. (2001) Local and systemic GM-CSF increase in Alzheimer’s disease and vascular dementia. Acta. Neurol. Scand. 103, 166–174.

    Article  PubMed  CAS  Google Scholar 

  • Togo T., Akiyama H., Iseki E., et al. (2002) Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol. 124, 83–92.

    Article  PubMed  CAS  Google Scholar 

  • Town T., Tan J., and Mullan M. (2001a) CD40 signaling and Alzheimer’s disease pathogenesis. Neurochem. Int. 39, 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Town T., Tan J., Sansone N., Obregon D., Klein T., and Mullan M. (2001b) Characterization of murine immunoglobulin G antibodies against human amyloid-beta1-42 Neurosci. Lett. 307, 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Town T., Vendrame M., Patel A., et al. (2002) Reduced Th1 and enhanced Th2 immunity after immunization with Alzheimer’s beta-amyloid(1–42). J. Neuroimmunol. 132, 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Townsend K. P., Town T., Mori T., et al. (2005) CD40 signaling regulates innate and adaptive activation of microglia in response to amyloid beta-peptide. Eur. J. Immunol. 35, 901–910.

    Article  PubMed  CAS  Google Scholar 

  • Weiner H. L., Lemere C. A., Maron R., et al. (2000) Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann. Neurol. 48, 567–579.

    Article  PubMed  CAS  Google Scholar 

  • Wyss-Coray T., Lin C., Yan F., et al. (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat. Med. 7, 612–618.

    Article  PubMed  CAS  Google Scholar 

  • Yamada M., Itoh Y., Shintaku M., et al. (1996) Immune reactions associated with cerebral amyloid angiopathy. Stroke 27, 1155–1162.

    PubMed  CAS  Google Scholar 

  • Zhang J., Wu X., Qin C., et al. (2003) A novel recombinant adeno-associated virus vaccine reduces behavioral impairment and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 14, 365–379.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Mullan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Town, T., Tan, J., Flavell, R.A. et al. T-cells in alzheimer’s disease. Neuromol Med 7, 255–264 (2005). https://doi.org/10.1385/NMM:7:3:255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:7:3:255

Index Entries

Navigation