Skip to main content
Log in

Vascular growth factors in cerebral ischemia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

During the past decade, there has been a surge of interest in growth factors (GFs) that act selectively on vascular endothelium and perivascular cells. Studies employing mutant mice or the administration of recombinant proteins have suggested that these factors not only mediate the proliferation of endothelial cells, but also regulate vascular differentiation, regression, and permeability. During and after cerebral ischemia, brain vasculature becomes leaky and unstable, and the normally impermeable blood-brain barrier breaks down. Several days after the ischemic insult, endothelial cells begin to proliferate, and angiogenesis occurs. Expression studies have shown that key vascular GFs are regulated, during these processes, in a complex and coordinated manner. The distinct pattern of regulation exhibited by each vascular GF suggests a unique role for each factor during the initial vascular destabilization and subsequent angiogenesis that occurs after cerebral ischemia. Data from studies in other biological systems support these suggested roles. Thus, manipulation of vascular GFs may prove to be an effective means of stabilizing or enriching brain vasculature after ischemia, and ameliorating the detrimental effects of blood-brain barrier breakdown and vessel regression after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gotoh O., Asano T., Koide T., and Takakura K. (1985) Ischemic brain edema following occlusions of the middle cerebral artery in the rat. I: The time courses of the brain water, sodium and potassium contents and blood-brain barrier permeability to 125I-albumin. Stroke 16 101–109.

    PubMed  CAS  Google Scholar 

  2. Hatashita S. and Hoff J. T. (1990a) Role of blood-brain barrier permeability in focal ischemic brain edema. Adv. Neurol. 52, 327–333.

    PubMed  CAS  Google Scholar 

  3. Hatashita S. and Hoff J. T. (1990b) Brain edema and cerebrovascular permeability during cerebral ischemia in rats. Stroke 21, 582–588.

    PubMed  CAS  Google Scholar 

  4. Nakagawa Y., Fujimoto N., Matsumoto K., and Cervós-Navarro J. (1990) Morphological changes in acute cerebral ischemia after occlusion and reperfusion in the rat. Adv. Neurol. 52, 21–27.

    PubMed  CAS  Google Scholar 

  5. Kitagawa K., Matsumoto M., Tagaya M., Ueda H., Oku N., Kuwabara K., et al. (1991) Temporal profile of serum albumin extravasation following cerebral ischemia in a newly established reproducible gerbil model for vasogenic brain edema: a combined immunohistochemical and dye tracer analysis. Acta Neuropathol. (Berl.) 82, 164–171.

    Article  CAS  Google Scholar 

  6. Menzies S. A., Betz A. L., and Hoff J. T. (1993) Contributions of ions and albumin to the formation and resolution of ischemic brain edema. J. Neurosurg. 78, 257–266.

    PubMed  CAS  Google Scholar 

  7. Matsumoto K., Lo E. H., Pierce A. R., Wei H., Garrido L., and Kowall N. W. (1995) Role of vasogenic edema and tissue cavitation in ischemic evolution on diffusion-weighted imaging: comparison with multiparameter MR and immunohistochemistry. Am. J. Neuroradiol. 16, 1107–1115.

    PubMed  CAS  Google Scholar 

  8. Rosenberg G. A. (1999) Ischemic brain edema. Progr. Cardiovasc. Dis. 42, 209–216.

    Article  CAS  Google Scholar 

  9. Feuerstein G. Z., Wang X., and Barone F. C. (1997) Inflammatory gene expression in cerebral ischemia and trauma. Potential new therapeutic targets. Ann. NY Acad. Sci. 825, 179–193.

    Article  PubMed  CAS  Google Scholar 

  10. del Zoppo G. J., Wagner S., and Tagaya M. (1997) Trends and future developments in the pharmacological treatment of acute ischaemic stroke. Drugs 54, 9–38.

    PubMed  Google Scholar 

  11. Becker K. J. (1998) Inflammation and acute stroke. Curr. Opin. Neurol. 11, 45–49.

    Article  PubMed  CAS  Google Scholar 

  12. DeGraba T. J. (1998) The role of inflammation after acute stroke: utility of pursuing antiadhesion molecule therapy. Neurology 51, S62–68.

    PubMed  CAS  Google Scholar 

  13. Jean W. C., Spellman S. R., Nussbaum E. S., and Low W. C. (1998) Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon. Neurosurgery 43, 1382–1396.

    Article  PubMed  CAS  Google Scholar 

  14. del Zoppo G. J. and Hallenbeck J. M. (2000) Advances in the vascular pathophysiology of ischemic stroke. Thromb. Res. 98, 73–81.

    Article  PubMed  Google Scholar 

  15. Stanimirovic D. and Satoh K. (2000) Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathol. 10, 113–126.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang R. L., Chopp M., Jiang N., Tang W. X., Prostak J., Manning A. M., and Anderson D. C. (1995) Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke 26, 1438–1442.

    PubMed  CAS  Google Scholar 

  17. Chopp M., Li Y., Jiang N., Zhang R. L., and Prostak J. (1996) Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. J. Cereb. Blood Flow. Metab. 16, 578–584.

    Google Scholar 

  18. Chopp M. and Zhang Z. G. (1996) Anti-adhesion molecule and nitric oxide protection strategies in ischemic stroke. Curr. Opin. Neurol. 9, 68–72.

    Article  Google Scholar 

  19. Goussev A. V., Zhang Z., Anderson D. C., and Chopp M. (1998) P-selectin antibody reduces hemorrhage and infarct volume resulting from MCA occlusion in the rat. J. Neurol. Sci. 161, 16–22.

    Article  PubMed  CAS  Google Scholar 

  20. Jiang N., Chopp M., and Chahwala S. (1998) Neutrophil inhibitory factor treatment of focal cerebral ischemia in the rat. Brain. Res. 788, 25–34.

    Article  PubMed  CAS  Google Scholar 

  21. Tomanek R. J. and Schatteman G. C. (2000) Angiogenesis: new insights and therapeutic potential. Anat. Rec. 261, 126–135.

    Article  PubMed  CAS  Google Scholar 

  22. Yancopoulos G. D., Davis S., Gale N. W., Rudge J. S., Wiegand S. J., and Holash J. (2000) Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248.

    Article  PubMed  CAS  Google Scholar 

  23. Bednar M. M., Raymond S., McAuliffe T., Lodge P. A., and Gross C. E. (1991) The role of neutrophils and platelets in a rabbit model of thromboembolic stroke. Stroke 22, 44–50.

    PubMed  CAS  Google Scholar 

  24. Morioka T., Kalehua A. N., Streit W. J. (1993) Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J. Comp. Neurol. 327, 123–132.

    Article  PubMed  CAS  Google Scholar 

  25. Okada Y., Copeland B. R., Mori E., Tung M. M., Thomas W. S., and del Zoppo G. J. (1994) P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 25, 202–211.

    PubMed  CAS  Google Scholar 

  26. Beck H., Acker T., Wiessner C., Allegrini P. R., and Plate K. H. (2000) Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am. J. Pathol. 157, 1473–1483.

    PubMed  CAS  Google Scholar 

  27. Marti H. J., Bernaudin M., Bellail A., Schoch H., Euler M., Petit E., and Risau W. (2000) Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am. J. Pathol. 156, 965–976.

    PubMed  CAS  Google Scholar 

  28. Schwab J. M., Nguyen T. D., Postler E., Meyermann R., and Schluesener H. J. (2000) Selective accumulation of cyclooxygenase-1-expressing microglial cells/macrophages in lesions of human focal cerebral ischemia. Acta Neuropathol. (Berl.) 99, 609–614.

    Article  CAS  Google Scholar 

  29. Wang X., Yue T. L., Barone F. C., and Feuerstein G. Z. (1995) Demonstration of increased endothelial-leukocyte adhesion molecule-1 mRNA expression in rat ischemic cortex. Stroke 26, 1665–1668.

    PubMed  CAS  Google Scholar 

  30. Zubkov A. Y., Ogihara K., Bernanke D. H., Parent A. D., and Zhang J. (2000) Apoptosis of endothelial cells in vessels affected by cerebral vasospasm. Surg. Neurol. 53, 260–266.

    Article  PubMed  CAS  Google Scholar 

  31. Terman B. I., Carrion M. E., Kovacs E., Rasmussen B. A., Eddy R. L., and Shows T. B. (1991) Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6, 1677–1683.

    PubMed  CAS  Google Scholar 

  32. Dumont D. J., Yamaguchi T. P., Conlon R. A., Rossant J., and Breitman M. L. (1992) tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7, 1471–1480.

    PubMed  CAS  Google Scholar 

  33. Quinn T. P., Peters K. G., De Vries C., Ferrara N., and Williams L. T. (1993) Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl. Acad. Sci. USA 90, 7533–7537.

    Article  PubMed  CAS  Google Scholar 

  34. Senger D. R., Perruzzi C. A., Feder J., and Dvorak H. F. (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 46, 5629–5632.

    PubMed  CAS  Google Scholar 

  35. Frelin C., Ladoux A., and D’Angelo G. (2000) Vascular endothelial growth factors and angiogenesis. Ann. Endocrinol. (Paris) 61, 70–74.

    CAS  Google Scholar 

  36. Soker S., Takashima S., Miao H., Neufeld G., and Klagsbrun M. (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745.

    Article  PubMed  CAS  Google Scholar 

  37. Jin K. L. Mao X. O., and Greenberg D. A. (2000) Vascular endothelial growth factor: direct neuroprotective effect in in vivo ischemia. Proc. Natl. Acad. Sci. USA 97, 10,242–10,247.

    CAS  Google Scholar 

  38. Sondell M., Sundler F., and Kanje M. (2000) Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur. J. Neurosci. 12, 4243–4254.

    Article  PubMed  CAS  Google Scholar 

  39. Kawakami A., Kitsukawa T., Takagi S., and Fujisawa H. (1996) Developmentally regulated expression of a cell surface protein, neuropilin, in the mouse nervous system. J. Neurobiol. 29, 1–17.

    Article  Google Scholar 

  40. Chédotal A., Del Rio J. A., Ruiz M., He Z., Borrell V., de Castro F., et al. (1998) Semaphorins III and IV repel hippocampal axons via two distinct receptors. Development 125, 4313–4323.

    PubMed  Google Scholar 

  41. Ferrara N. and Davis-Smyth T. (1997) The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4–25.

    Article  PubMed  CAS  Google Scholar 

  42. Gluzman-Poltorak Z., Cohen T., Herzog Y., and Neufeld G. (2000) Neuropilin-2 and neurophilin-1 are receptors for the 165-amino acid form of vascular endothelial growth factor (VEGF) and of placenta growth factor-2, but only neuropilin-2 functions as a receptor for the 145-amino acid form of VEGF. Biol. Chem. 275, 18,040–18,045.

    CAS  Google Scholar 

  43. Carmeliet P. and Collen D. (2000) Molecular basis of angiogenesis. Roles of VEGF and VE-cadherin. Ann. NY Acad. Sci. 902, 249–262.

    Article  PubMed  CAS  Google Scholar 

  44. Dvorak H. F. (2000) VPF/VEGF and the angiogenic response. Semin. Perinatol. 24, 75–78.

    Article  PubMed  CAS  Google Scholar 

  45. Ferrara N., Carver-Moore K., Chen H., Dowd M., Lu L., O’Shea K. S., et al. (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442.

    Article  Google Scholar 

  46. Carmeliet P., Ferreira V., Breier G., Pollefeyt S., Kieckens L., Gertsenstein M., et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439.

    Article  Google Scholar 

  47. Fong G. H., Rossant J., Gertsenstein M., and Breitman M. L. (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70.

    Article  PubMed  CAS  Google Scholar 

  48. Shalaby F., Rossant J., Yamaguchi T. P., Gertsenstein M., Wu X. F., Breitman M. L., and Schuh A. C. (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66.

    Article  PubMed  CAS  Google Scholar 

  49. Hiratsuka S., Minowa O., Kuno J., Noda T., and Shibuya M. (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. Sci. USA 95, 9349–9354.

    Article  PubMed  CAS  Google Scholar 

  50. Rosenstein J. M., Mani N., Silverman W. F., and Krum J. M. (1998) Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc. Natl. Acad. Sci. USA 95, 7086–7091.

    Article  PubMed  CAS  Google Scholar 

  51. Springer M. L., Chen A. S., Kraft P. E., Bednarski M., and Blau H. M. (1998) VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol. Cell 2, 549–558.

    Article  PubMed  CAS  Google Scholar 

  52. Bauters C., Asahara T., Zheng L. P., Takeshita S., Bunting S., Ferrara N., Symes J. F., and Isner J. M. (1994) Physiological assessment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb. Am. J. Physiol. 267, H1263–1271.

    PubMed  CAS  Google Scholar 

  53. Takeshita S., Zheng L. P., Brogi E., Kearney M., Pu L. Q., Bunting S., Ferrara N., Symes J. F., and Isner J. M. (1994) Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. Clin. Invest. 93, 662–670.

    CAS  Google Scholar 

  54. Pearlman J. D., Hibberd M. G., Chuang M. L., Harada K., Lopez J. J., Gladstone S. R., et al. (1995) Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat. Med. 1, 1085–1089.

    Article  PubMed  CAS  Google Scholar 

  55. Isner J. M., Pieczek A., Schainfeld R., Blair R., Haley L., Asahara T., Rosenfeld K., Razvi S., Walsh K., and Symes J. F. (1996) Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348, 370–374.

    Article  Google Scholar 

  56. Baumgartner I., Pieczek A., Manor O., Blair R., Kearney M., Walsh K., and Isner J. M. (1998) Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97, 1114–1123.

    PubMed  CAS  Google Scholar 

  57. Isner J. M. (1998) Arterial gene transfer of naked DNA for therapeutic angiogenesis: early clinical results. Adv. Drug Deliv. Rev. 30, 185–197.

    Article  PubMed  CAS  Google Scholar 

  58. Losordo D. W., Vale P. R., Symes J. F., Dunnington C. H., Esakof D. D., Maysky M., et al. (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98, 2800–2804.

    PubMed  CAS  Google Scholar 

  59. Proescholdt M. A., Heiss J. D., Walbridge S., Mühlhauser J., Capogrossi M. C., Oldfield E. H., and Merrill M. J. (1999) Vascular endothelial growth factor (VEGF) modulates vascular permeability and inflammation in rat brain. J. Neuropathol. Exp. Neurol. 58, 613–627.

    PubMed  CAS  Google Scholar 

  60. Carmeliet P. (2000) VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat. Med. 6, 1102–1103.

    Article  PubMed  CAS  Google Scholar 

  61. Dobrogowska A., Lossinsky A. S., Tarnawski M., and Vorbrodt A. W. (1998) Increased blood-brain barrier permeability and endothelial abnormalities induced by vascular endothelial growth factor. J. Neurocytol. 27, 163–173.

    Article  PubMed  CAS  Google Scholar 

  62. Zhao L., Zhang M. M., and Ng K. (1998) Effects of vascular permeability factor on the permeability of cultured endothelial cells from brain capillaries. J. Cardiovasc. Pharmacol. 32, 1–4.

    Article  PubMed  CAS  Google Scholar 

  63. Kaner R.J., Ladetto J. V., Singh R., Fukuda N., Matthay M. A., and Crystal R. G. (2000) Lung overexpression of the vascular endothelial growth factor gene induces pulmonary edema. Am. J. Respir. Cell. Mol. Biol. 22, 657–664.

    PubMed  CAS  Google Scholar 

  64. Thurston G., Rudge J. S., Ioffe E., Zhou H., Ross L., Croll S. D., et al. (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med. 6, 460–463.

    Article  PubMed  CAS  Google Scholar 

  65. McClure N., Healy D. L., Rogers P. A., Sullivan J., Beaton L., Haning R. V., Jr., Connolly D. T., and Robertson D. M. (1994) Vascular endothelial growth factor as capillary permeability agent in ovarian hyperstimulation syndrome. Lancet. 344, 235–236.

    Article  PubMed  CAS  Google Scholar 

  66. Aiello L. P., Northrup J. M., Keyt B. A., Takagi H., and Iwamoto M. A. (1995) Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch. Opthalmol. 113, 1538–1544.

    CAS  Google Scholar 

  67. Baker P. N., Krasnow J., Roberts J. M., and Yeo K. T. (1995) Elevated serum levels of vascular endothelial growth factor in patients with preeclampsia. Obstet. Gynecol. 86, 815–821.

    Article  PubMed  CAS  Google Scholar 

  68. Iitaka M., Miura S., Yamanaka K., Kawasaki S., Kitahama S., Kawakami Y., et al. (1998) Increased serum vascular endothelial growth factor levels and intrathyroidal vascular area in patients with Grave’s disease and Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metabol. 83, 3908–3912.

    Article  CAS  Google Scholar 

  69. Kikuchi K., Kubo M., Kadono T., Yazawa N., Ihn H., and Tamaki K. (1998) Serum concentrations of vascular endothelial growth factor in collagen diseases. Br. J. Dermatol. 139, 1049–1051.

    Article  PubMed  CAS  Google Scholar 

  70. Levin E. R., Rosen G. F., Cassidenti D. L., Yee B., Meldrum D., Wisot A., and Pedram A. (1998) Role of vascular endothelial cell growth factor in ovarian hyperstimulation syndrome. Clin. Invest. 102, 1978–1985.

    CAS  Google Scholar 

  71. Mesiano S., Ferrara N., and Jaffe R. B. (1998) Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am. J. Pathol. 153, 1249–1256.

    PubMed  CAS  Google Scholar 

  72. Bousvaros A., Leichtner A., Zurakowski D., Kwon J., Law T., Keough K., and Fishman S. (1999) Elevated serum vascular endothelial growth factor in children and young adults with Crohn’s disease. Digestive Dis. Sci. 44, 424–430.

    Article  CAS  Google Scholar 

  73. McColley S. A., Stellmach V., Boas S. R., Jain M., and Crawford S. E. (2000) Serum vascular endothelial growth factor is elevated in cystic fibrosis and decreases with treatment of acute pulmonary exacerbation. Am. J. Crit. Care Med. 161, 1877–1880.

    CAS  Google Scholar 

  74. Dvorak H. F., Nagy J. A., Feng D., Brown L. F., and Dvorak A. M. (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol. 237, 97–132.

    PubMed  CAS  Google Scholar 

  75. Davis S., Aldrich T. H., Jones P. F., Acheson A., Compton D. L., Jain V., et al. (1996) Isolation of angiopoietin-1, a ligand for the Tie2 receptor, by secretion trap cloning. Cell 87, 1161–1169.

    Article  Google Scholar 

  76. Suri C., Jones P. F., Patan S., Bertunkova S., Maisonpierre P. C., Davis S., Sato T. N., and Yancopoulos G. D. (1996) Requisite role of angiopoietin-1, a ligand for the Tie-2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180.

    Article  Google Scholar 

  77. Maisonpierre P. C., Suri C., Jones P. F., Bartunkova S., Wiegand S. J., Radziejewski C., et al. (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60.

    Article  PubMed  CAS  Google Scholar 

  78. Valenzuela D. M., Griffiths J. A., Rojas J., Aldrich T. H., Jones P. F., Zhou H., et al. (1999) Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc. Natl. Acad. Sci. USA 96, 1904–1909.

    Article  PubMed  CAS  Google Scholar 

  79. Dumont D. J., Gradwohl G., Fong G., Puri M. C., Gertsenstein M., Auerbach A., and Breitman M. L. (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, Tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 8424, 1897–1909.

    Article  Google Scholar 

  80. Sato T. N., Tozawa Y., Deutsch U., Wolburg-Buchholz K., Fujiwara Y., Gendron-Maguire M., et al. (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376, 70–74.

    Article  PubMed  CAS  Google Scholar 

  81. Thurston G., Suri C., Smith K., McClain J., Sato T. N., Yancopoulos G. D., and McDonald D. M. (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511–2514.

    Article  PubMed  CAS  Google Scholar 

  82. Gamble J. R., Drew J., Trezise L., Underwood A., Parsons M., Kasminkas L., et al. (2000) Angiopoietin-1 is an anti-permeability and anti-inflammatory agent in vivo and targets cell junctions. Circ. Res. 87, 603–607.

    PubMed  CAS  Google Scholar 

  83. Goede V., Schmidt T., Kimmina S., Kozian D., and Augustin H. G. (1998) Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab. Invest. 78, 1385–1394.

    PubMed  CAS  Google Scholar 

  84. Wiegand S. J., Boland P., and Yancopoulos G. D. (2001) Cooperative roles for the angiopoietins and vascular endothelial growth factor in ovarian angiogenesis, in Ovulation: Evolving Scientific and Clinical Concepts (Adashi EY, ed.), Springer-Verlag, New York, pp. 175–186.

    Google Scholar 

  85. Holash J., Maisonpierre P. C., Compton D., Boland P., Alexander C. R., Zagzag D., Yancopoulos G. D., and Wiegand S. J. (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998.

    Article  PubMed  CAS  Google Scholar 

  86. Hackett S. F., Ozaki H., Strauss R. W., Wahlin K., Suri C. Maisonpierre P., Yancopoulos G., and Campochiaro P. A. (2000) Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. J. Cell Physiol. 184, 275–284.

    Article  PubMed  CAS  Google Scholar 

  87. Hazzard T. M., Christenson L. K., and Stouffer R. L. (2000) Changes in expression of vascular endothelial growth factor and angiopoietin-1 and -2 in the macaque corpus luteum during the menstrual cycle. Mol. Hum. Reprod. 6, 993–998.

    Article  PubMed  CAS  Google Scholar 

  88. Lin T. N., Wang C. K., Cheung W. M., and Hsu C. Y. (2000) Induction of angiopoietin and tie receptor mRNA expression after cerebral ischemia-reperfusion. J. Cereb. Blood Flow Metab. 20, 387–395.

    Article  PubMed  CAS  Google Scholar 

  89. Kovacs Z., Ikezaki K., Samoto K., Inamura T., and Fukui M. (1996) VEGF and flt: expression time kinetics in rat brain infarct. Stroke 27, 1865–1873.

    Google Scholar 

  90. Hayashi T., Abe K., Suzuki H., and Itoyama Y. (1997) Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28, 2039–2044.

    PubMed  CAS  Google Scholar 

  91. Cobbs C. S., Chen J., Greenberg D. A., and Graham S. H. (1998) Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat. Neurosci. Lett. 249, 79–82.

    Article  PubMed  CAS  Google Scholar 

  92. Lennmyr F., Ata K. A., Funa K., Olsson Y., and Terent A. (1998) Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J. Neuropathol. Exp. Neurol. 57, 874–882.

    Article  PubMed  CAS  Google Scholar 

  93. Issa R., Krupinski J., Bujny T., Kumar S., Kaluza J., and Kumar P. (1999) Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischemic stroke. Lab. Invest. 79, 417–425.

    PubMed  CAS  Google Scholar 

  94. Lee M.-Y., Ju W.-K., Cha J.-H., Son B. C., Chun M.-H., Kang J. K., and Park C. K. (1999) Expression of vascular endothelial growth factor mRNA following transient forebrain ischemia in rats. Neurosci. Lett. 265, 107–110.

    Article  PubMed  CAS  Google Scholar 

  95. Pichiule P., Chavez J. C., Xu K., and LaManna J. C. (1999) Vascular endothelial growth factor upregulation in transient global ischemia induced by cardiac arrest and resuscitation in rat brain. Brain Res. Mol. Brain Res. 74, 83–90.

    Article  PubMed  CAS  Google Scholar 

  96. Plate K. H., Beck H., Danner S., Allegrini P. R., and Wiessner C. (1999) Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J. Neuropathol. Exp. Neurol. 58, 654–666.

    PubMed  CAS  Google Scholar 

  97. Croll S. D., Cai N., Martin F. J., Zhang Q., Yancopoulos G. D., and Wiegand S. J. (2000) Angiopoietins and Tie receptors are upregulated after transient middle cerebral artery occlusion. Soc. Neurosci. Abstr. 26, 1811.

    Google Scholar 

  98. Hayashi T., Abe K., and Itoyama Y. (1998) Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J. Cereb. Blood Flow Metab. 18, 887–895.

    Article  PubMed  CAS  Google Scholar 

  99. Yourey P. A., Gohari S., Su J. L., and Alderson R. F. (2000) Vascular endothelial cell growth factors promote the in vivo development of rat photoreceptor cells. J. Neurosci. 20, 6781–6788.

    PubMed  CAS  Google Scholar 

  100. Zhang Z. G., Chopp M., Lu D., Wayne T., Zhang R. L., and Morris D. (1999) Receptor tyrosine kinase tie 1 mRNA is upregulated on cerebral microvessels after embolic middle cerebral artery occlusion in rat. Brain Res. 847, 338–342.

    Article  PubMed  CAS  Google Scholar 

  101. Bongrazio M., Baumann C., Zakrzewicz A., Pries A. R., and Gaehtgens P. (2000) Evidence for modulation of genes involved in vascular adaptation by prolonged exposure of endothelial cells to shear stress. Cardiovasc. Res. 47, 384–393.

    Article  PubMed  CAS  Google Scholar 

  102. Mandriota S. J. and Pepper M. S. (1998) Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ. Res. 83, 852–859.

    PubMed  CAS  Google Scholar 

  103. Chiarugi V., Magnelli L., Chiarugi A., and Gallo O. (1999) Hypoxia induced pivotal tumor angiogenesis control factors including p53, vascular endothelial growth factor and the NFκB-dependent inducible nitric oxide synthase and cyclo-oxygenase-2. J. Cancer Res. Clin. Oncol. 125, 525–528.

    Article  PubMed  CAS  Google Scholar 

  104. El Awad B., Kreft B., Wolber E. M., Hellwig-Burgel T., Metzen E., Fandrey J., and Jelkmann W. (2000) Hypoxia and interleukin-1β stimulate vascular endothelial growth factor production in human proximal tubular cells. Kidney Int. 58, 43–50.

    Article  PubMed  Google Scholar 

  105. Krikun G., Schatz F., Finlay T., Kadner S., Mesia A., Gerrets R., and Lockwood C. J. (2000) Expression of angiopoietin-2 by human endometrial cells: regulation by hypoxia and inflammation. Biochem. Biophys. Res. Commun. 275, 159–163.

    Article  PubMed  CAS  Google Scholar 

  106. Mandriota S. J., Pyke C., Di Sanza C., Quinodoz P., Pittet B., and Pepper M. S. (2000) Hypoxia-inducible angiopoietin-2 expression is mimicked by iodonium compounds and occurs in the rat brain and skin in response to systemic hypoxia and tissue ischemia. Am. J. Pathol. 156, 2077–2089.

    PubMed  CAS  Google Scholar 

  107. Oh H., Takagi H., Suzuma K., Otani A., Matsumura M., and Honda Y. (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J. Biol. Chem. 274, 15,732–15,739.

    CAS  Google Scholar 

  108. Tsuzuki Y., Fukumura D., Oosthuyse B., Koike C., Carmeliet P., and Jain R. K. (2000) Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1α→hypoxia response element→VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 60, 6248–6252.

    PubMed  CAS  Google Scholar 

  109. Yuan H. T., Yang S. P., and Woolf A. S. (2000) Hypoxia upregulates angiopoietin-2, a tie-2 ligand, in mouse mesangial cells. Kidney Int. 58, 1912–1919.

    Article  PubMed  CAS  Google Scholar 

  110. Bergeron M., Yu A. Y., Solway K. E., Semenza G. L., and Sharp F. R. (1999) Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur. J. Neurosci. 11, 4159–4170.

    Article  PubMed  CAS  Google Scholar 

  111. Ferrara N. and Alitalo K. (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 5, 1359–1363.

    Article  PubMed  CAS  Google Scholar 

  112. Zhang Z. G., Zhang L., Jiang Q., Zhang R., Davies K., Powers C., Bruggen N. V., and Chopp M. (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. Clin. Invest. 106, 829–838.

    CAS  Google Scholar 

  113. Mazure N. M., Chen E. Y., Laderoute K. R., and Giaccia A. J. (1997) Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia-inducible factor-1 transcriptional element. Blood 90, 3322–3331.

    PubMed  CAS  Google Scholar 

  114. Gerber H. P., McMurtrey A., Kowalski J., Yan M., Keyt B. A., Dixit V., and Ferrara N. (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3∝-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. Biol. Chem. 273, 30,336–30,343.

    CAS  Google Scholar 

  115. van Bruggen N., Thibodeaux H., Palmer J. T., Lee W. P., Fu L., Cairns B., et al. (1999) VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J. Clin. Invest. 104, 1613–1620.

    Article  PubMed  Google Scholar 

  116. Ferrara N., Chen H., Davis-Smyth T., Gerber H. P., Nguyen T. N., Peers D., et al. (1998) Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 4, 336–340.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan D. Croll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croll, S.D., Wiegand, S.J. Vascular growth factors in cerebral ischemia. Mol Neurobiol 23, 121–135 (2001). https://doi.org/10.1385/MN:23:2-3:121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:23:2-3:121

Index Entries

Navigation