Skip to main content
Log in

Interaction of the nuclear matrix protein NAKAP with HypA and huntingtin

Implications for nuclear toxicity in Huntington’s disease pathogenesis

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Although expansion of a polyglutamine tract in the huntingtin protein is known to cause Huntington’s disease (HD), there is considerable debate as to how this mutation leads to the selective neuronal loss that characterizes the disease. The observation that mutant huntingtin accumulates in neuronal nuclei has led to the hypothesis that the molecular mechanism may involve the disruption of specific nuclear activities. Recently, several nuclear interaction partners for huntingtin have been identified, including HypA, a splicing factor-like protein of unknown function. Using a yeast two-hybrid screen, we have identified the interaction of HypA with the nuclear scaffold protein NAKAP. Interaction of NAKAP with HypA is specific and occurs both in yeast and in vitro. Deletion-mapping studies indicate that binding occurs via a proline-rich domain in NAKAP with a WW domain of HypA. In cultured cells, NAKAP and HypA localize within the nucleus and copurify with the nuclear matrix. Furthermore, NAKAP associates with HypA from human brain and copurifies with huntingtin protein in brain tissue obtained from HD patients. In HD neurons, NAKAP and mutant huntingtin were colocalized to the nuclear matrix and were found to be components of nuclear aggregates. Hence, the NAKAP-HypA scaffold is a potential nuclear docking site for huntingtin protein and may contribute to the nuclear accumulation of huntingtin observed in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akileswaran L., Taraska J. W., Sayer J. A., Gettemy J. M., and Coghlan V. M. (2001) A-kinase-anchoring protein AKAP95 is targeted to the nuclear matrix and associates with p68 RNA helicase. J. Biol. Chem. 276, 17,448–17,454.

    Article  CAS  Google Scholar 

  • Barrack E. R. and Coffey D. S. (1982) Biological properties of the nuclear matrix: steroid hormone binding. Recent Prog. Horm. Res. 38, 133–195.

    PubMed  CAS  Google Scholar 

  • Bates G. P. (2001) Huntington’s disease. Exploiting expression. Nature 413, 691–694.

    Article  PubMed  CAS  Google Scholar 

  • Becker M. W., Kotzuk J. A., Sharp, A. H., et al. (1998) Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol. Dis. 4, 387–397.

    Article  Google Scholar 

  • Berezney R. and Coffey D. S. (1974) Identification of a nuclear protein matrix. Biochem. Biophys. Res. Commun. 60, 1410–1417.

    Article  PubMed  CAS  Google Scholar 

  • Berezney R., Mortillaro M., Ma H., Wei X., and Samarabandu J. (1995) The nuclear matrix: a structural milieu for genomic function, In: Berezney R. and Jeon K. W. (eds) International Reviews of Cytology, New York: Academic Press, Vol. 162A, pp. 1–65.

    Google Scholar 

  • Boutell J. M., Thomas P., Neal J. W., et al. (1999) Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. Hum. Mol. Genet. 8, 1647–1655.

    Article  PubMed  CAS  Google Scholar 

  • Coghlan V. M. (1998) In: Hames B. D. (ed), Gel Electrophoresis of Proteins—A Practical Approach, Oxford: IRL Press, pp. 293–311.

    Google Scholar 

  • Coghlan V. M., Langeberg L. K., Fernandez A., Lamb N. J. C., and Scott J. D. (1994) Cloning and characterization of AKAP95, a nuclear protein that associates with the regulatory subunit of type II cAMP-dependent protein kinase. J. Biol. Chem. 269, 7658–7665.

    PubMed  CAS  Google Scholar 

  • Coghlan V. M., Perrino B. A., Howard M., et al. (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267, 108–111.

    Article  PubMed  CAS  Google Scholar 

  • Criqui-Filipe P., Ducret C., Maira S. M., and Wasylyk B. (1999) Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J. 18, 3392–3403.

    Article  PubMed  CAS  Google Scholar 

  • Davie J. R., Samuel S. K., Spencer V. A., et al. (1999) Organization of chromatin in cancer cells: role of signalling pathways. Biochem. Cell Biol. 77, 265–275.

    Article  PubMed  CAS  Google Scholar 

  • Davies S. W., Turmaine M., Cozens B. A., et al. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M., Sapp E., Chase K., et al. (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M., Sapp E., Chase K. O., et al. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.

    Article  PubMed  CAS  Google Scholar 

  • Duttweiler H. M. (1996) A highly sensitive and nonlethal beta-galactosidase plate assay for yeast. Trends Genet. 12, 340–341.

    Article  PubMed  CAS  Google Scholar 

  • Eide T., Coghlan V. M., Orstavik S., et al. (1998) Molecular cloning, chromosomal localization, and cell cycle-dependent subcellular distribution of the A-kinase anchoring protein, AKAP95. Exp. Cell Res. 238, 305–316.

    Article  PubMed  CAS  Google Scholar 

  • Faber P. W., Barnes G. T., Srinidhi J., Chen J., Gusella J. F., and MacDonald M. E. (1998) Huntingtin interacts with a family of WW domain proteins. Hum. Mol. Genet. 7, 1463–1474.

    Article  PubMed  CAS  Google Scholar 

  • Feuerstein N., Chan P. K., and Mond J. J. (1988) Identification of numatrin, the nuclear matrix protein associated with induction of mitogenesis, as the nucleolar protein B23. Implication for the role of the nucleolus in early transduction of mitogenic signals. J. Biol. Chem. 263, 10,608–10,612.

    CAS  Google Scholar 

  • Fey E. G., Krochmalnic G., and Penman S. (1986) The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy. J. Cell Biol. 102, 1654–1665.

    Article  PubMed  CAS  Google Scholar 

  • Folstein S. E. (1990) Huntington’s Disease. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Freiman R. N. and Tjian R. (2002) Neurodegeneration. A glutamine-rich trail leads to transcription factors. Science 296, 2149–2150.

    Article  PubMed  Google Scholar 

  • Gutekunst C. A., Levey A. I., Heilman C. J., et al. (1995) Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc. Natl. Acad. Sci. USA 92, 8710–8714.

    Article  PubMed  CAS  Google Scholar 

  • Harjes P. and Wanker E. E. (2003) The hunt for huntingtin function: interaction of partners tell many different stories. Trends Biochem. Sci. 28, 425–433.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson J. G., Agopyan N., Gutekunst C-A., et al. (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Huang C. C., Faber P. W., Persichetti F., et al. (1998) Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat. Cell Mol. Genet. 24, 217–233.

    Article  PubMed  CAS  Google Scholar 

  • Hughes J. H. and Cohen M. B. (1999) Nuclear matrix proteins and their potential applications to diagnostic pathology Am. J. Clin. Pathol. 111, 267–274.

    PubMed  CAS  Google Scholar 

  • Kegel K. B., Meloni A. R., Yi Y., et al. (2002) Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J. Biol. Chem. 277, 7466–7476.

    Article  PubMed  CAS  Google Scholar 

  • Khoshnan A., Ko J., and Patterson P. H. (2002) Effects of intracellular expression of anti-huntingtin antibodies of various specificities on mutant huntingtin aggregation and toxicity. Proc. Natl. Acad. Sci. USA 99, 1002–1027.

    Article  PubMed  CAS  Google Scholar 

  • Ko J., Ou S., and Patterson P. H. (2001) New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res. Bull. 56, 319–329.

    Article  PubMed  CAS  Google Scholar 

  • Koipally J. and Georgopoulos K. (2000) Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J. Biol. Chem. 275, 19,594–19,602.

    Article  CAS  Google Scholar 

  • Laforet G. A., Sapp E., Chase K., et al. (2001) Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington’s disease. J. Neurosci. 21, 9112–9123.

    PubMed  CAS  Google Scholar 

  • Li S. -H. and Li X. -J. (2004) Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet. 20, 146–154.

    Article  PubMed  Google Scholar 

  • Manczak M., Park B. S., Jung Y., and Reddy P. H. (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease. Neuromol. Med. 5, 147–163.

    Article  CAS  Google Scholar 

  • Martins S. B., Eide T., Steen R. L., Jahnsen T., Skalhegg B. S., and Collas P. (2000) HA95 is a protein of the chromatin and nuclear matrix regulating nuclear envelope dynamics. J. Cell Sci. 113, 3703–3713.

    PubMed  CAS  Google Scholar 

  • Meloni A. R., Smith E. J., and Nevins J. R. (1999) A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc. Natl. Acad. Sci. USA 96, 9574–9579.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T., Uchida C., Anderson S. F., et al. (1997) RNA Helicase A mediates association of CBP with RNA polymerase II. Cell 90, 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  • Nelson W. G., Pienta K. J., Barrack E. R., and Coffey D. S. (1986) The role of the nuclear matrix in the organization and function of DNA. Ann. Rev. Biophys. Biophys. Chem. 15, 457–475.

    Article  CAS  Google Scholar 

  • Neri C. (2001) New light on polyglutamine neurodegenerative disorders: interference with transcription. Trends Mol. Med. 7, 283–284.

    Article  PubMed  CAS  Google Scholar 

  • Neuwald A. F. and Hirano T. (2000) HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions. Genome Res. 10, 1445–1452.

    Article  PubMed  CAS  Google Scholar 

  • Nucifora F. C., Sasaki M., Peters M. F., et al. (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428.

    Article  PubMed  CAS  Google Scholar 

  • Orstavik S., Eide T., Collas P., et al. (2000) Identification, cloning and characterization of a novel nuclear protein, HA95, homologous to A-kinase anchoring protein 95. Biol. Cell 92, 27–37.

    Article  PubMed  CAS  Google Scholar 

  • Passani L. A., Bedford M. T., Faber P. W., et al. (2000) Huntingtin’s WW domain partners in Huntington’s disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington’s disease pathogenesis. Hum. Mol. Genet. 9, 2175–2182.

    Article  PubMed  CAS  Google Scholar 

  • Perez M. K., Paulson H. L., Pendse S. J., Saionz S. J., Bonini N. M., and Pittman R. N. (1998) Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell Biol. 143, 1457–1470.

    Article  PubMed  CAS  Google Scholar 

  • Pienta K. J., Partin A. W., and Coffey D. S. (1989) Cancer as a disease of DNA organization and dynamic cell structure Cancer Res. 49, 2525–2532.

    PubMed  CAS  Google Scholar 

  • Pujol M. J., Bosse R., Vendrell M., Serratosa J., and Bachs O. (1993) Nuclear calmodulin-binding proteins in rat neurons J. Neurochem. 60, 1422–1428.

    Article  PubMed  CAS  Google Scholar 

  • Reddy P. H., Williams M., and Tagle D. A. (1999) Recent advances in understanding the pathogenesis of Huntington’s disease. Trends Neurosci. 22, 248–255.

    Article  PubMed  CAS  Google Scholar 

  • Reddy P.H., Williams M., Charles V., et al. (1998) Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat. Genet. 20, 198–202.

    Article  PubMed  CAS  Google Scholar 

  • Replogle-Schwab R., Pienta K. J., and Getzenberg R. H. (1996) The utilization of nuclear matrix proteins for cancer diagnosis. Crit. Rev. Euk. Gene Expr. 6, 103–113.

    CAS  Google Scholar 

  • Rossow K. L. and Janknecht R. (2003) Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 22, 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Schilling G., Becher M. W., Sharp A. H., et al. (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet. 8, 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Seki N., Ueki N., Yano K., Saito T., Masuho Y., and Muramatsu M. (2000) cDNA cloning of a new member of the Ras superfamily, RAB9-like, on the human chromosome Xq22.1-q22.3 region. J. Hum. Genet. 45, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Sharp A. H., Loev S. J., Schilling G., et al. (1995) Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron 14, 1064–1075.

    Article  Google Scholar 

  • Shimohata T., Nakajima T., Yamada M., et al. (2000) Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat. Genet. 26, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Skinner P. J., Koshy B. T., Cummings C. J., et al. (1997) Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389, 971–974.

    Article  PubMed  CAS  Google Scholar 

  • Staufenbiel M. and Deppert W. (1983) Different structural systems of the nucleus are targets for SV40 large T antigen. Cell 33, 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Steffan J. S., Kazantsev A., Spasic-Boskovic O., et al. (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 97, 6763–6768.

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel J. P., Myers R. H., Stevens T. J., Ferrante R. J., Bird E. D., and Richardson E. P., Jr. (1985) Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 44, 559–577.

    PubMed  CAS  Google Scholar 

  • Yang J. P., Tang H., Reddy T. R., and Wong-Staal F. (2001) Mapping the functional domains of HAP95, a protein that binds RNA helicase A and activates the constitutive transport element of type D retroviruses. J. Biol. Chem. 276, 30,694–30,700.

    CAS  Google Scholar 

  • Zini N., Martelli A. M., Neri L. M., et al. (1995) Immunocytochemical evaluation of protein kinase C translocation to the inner nuclear matrix in 3T3 mouse fibroblasts after IGF-I treatment. Histochem. Cell Biol. 103, 447–457.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent M. Coghlan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayer, J.A., Manczak, M., Akileswaran, L. et al. Interaction of the nuclear matrix protein NAKAP with HypA and huntingtin. Neuromol Med 7, 297–310 (2005). https://doi.org/10.1385/NMM:7:4:297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:7:4:297

Index Entries

Navigation