Skip to main content
Log in

Informatics center for mouse genomics

The dissection of complex traits of the nervous system

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

In recent years, there has been an explosion in the number of tools and techniques available to researchers interested in exploring the genetic basis of all aspects of central nervous system (CNS) development and function. Here, we exploit a powerful new reductionist approach to explore the genetic basis of the very significant structural and molecular differences between the brains of different strains of mice, called either complex trait or quantitative trait loci (QTL) analysis. Our specific focus has been to provide universal access over the web to tools for the genetic dissection of complex traits of the CNS—tools that allow researchers to map genes that modulate phenotypes at a variety of levels ranging from the molecular all the way to the anatomy of the entire brain.

Our website, The Mouse Brain Library (MBL; http://mbl.org) is comprised of four interrelated components that are designed to support this goal: The Brain Library, iScope, Neurocartographer, and WebQTL. The centerpiece of the MBL is an image database of histologically prepared museum-quality slides representing nearly 2000 mice from over 120 strains—a library suitable for stereologic analysis of regional volume. The iScope provides fast access to the entire slide collection using streaming video technology, enabling neuroscientists to acquire high-magnification images of any CNS region for any of the mice in the MBL. Neurocartographer provides automatic segmentation of images from the MBL by warping precisely delineated boundaries from a 3D atlas of the mouse brain. Finally, WebQTL provides statistical and graphical analysis of linkage between phenotypes and genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airey D. C., Lu L., and Williams R. W. (2001) Genetic control of the mouse cerebellum: Identification of quantitative trait loci modulating size and architecture. J. Neurosci. 21, 5099–5109.

    CAS  Google Scholar 

  • Baldock R. A., Bard J. B. L., Burger A., et al. (2003) EMAP and EMAGE: a framework for understanding spatially organized data. Neuroinformatics 1, 309–326.

    Article  Google Scholar 

  • Belknap J. K. (1998) Effect of within-strain sample size on QTL detection and mapping using recombinant inbred mouse strains. Behav. Genet. 28, 29–38.

    Article  CAS  Google Scholar 

  • Chesler E. J., Wang J., Lu L., Manly K. F., and Williams R. W. (2003) Genetic correlates of gene expression in recombinant inbred strains: a relational model system to explore neurobehavioral phenotypes. Neuroinformatics 1, 343–358.

    Article  Google Scholar 

  • Cohen F. S., Yang Z., Huang Z., and Nissanov J. (1998) Automatic matching of homologous histological sections. IEEE Trans. Biomed. Eng. 45, 642–649.

    Article  CAS  Google Scholar 

  • Crabbe J. C., Belknap J. K., Mitchell S. R., and Crawshaw L. I. (1994) Quantitative trait loci mapping of genes that influence the sensitivity and tolerance to ethanol-induced hypothermia in BXD recombinant inbred mice. J. Pharmacol. Exp. Ther. 269, 184–192.

    CAS  Google Scholar 

  • Curcio C. A. and Allen K. A. (1990) Topography of ganglion cells in human retina. J. Comp. Neurol. 300, 5–25.

    Article  CAS  Google Scholar 

  • Farkas D. L., Baxter G., DeBiasio R. L., et al. (1993) Multimode light microscopy and the dynamics of molecules, cells, and tissues. Annu. Rev. Physiol. 55, 785–817.

    CAS  Google Scholar 

  • Galbreath E., Kim S. J., Park K., Brenner M., and Messing A. (1995) Overexpression of TGF-beta 1 in the central nervous system of transgenic mice results in hydrocephalus. J. Neuropathol. Exp. Neurol. 54, 339–349.

    CAS  Google Scholar 

  • Gefen S., Tretiak O., Bertrand L., Rosen G., and Nissanov J. Surface alignment of an elastic body using a mutli-resolution wavelet representation. IEEE Trans Biomed Eng., in press.

  • Gilissen E. and Zilles K. (1996) The calcarine sulcus as an estimate of the total volume of human striate cortex: a morphometric study of reliability and intersubject variability. J. Hirnforsch. 37, 57–66.

    CAS  Google Scholar 

  • Gilissen E. and Williams R. W. (1997) Genetic dissection and QTL analysis of forebrain, hindbrain, olfactory bulb, and cerebellum. Society for Neuroscience Abstracts 23, 864.

    Google Scholar 

  • Gundersen H. J. G. and Jensen E. B. (1987) The efficiency of systematic sampling in stereology and its prediction. J. Microscop. 147, 229–263.

    CAS  Google Scholar 

  • Gustafson C., Tretiak O., Bertrand L. and Nissanov J. Design and implementation of software for assembly and browsing of 3D brain atlases. Comput Methods Programs Biomed., in press.

  • Hayashi N., Leifer D. W., and Cohen A. R. (2000) Chronologic changes of cerebral ventricular size in a transgenic model of hydrocephalus. Pediatr. Neurosurg. 33, 182–187.

    Article  CAS  Google Scholar 

  • Hibbard L. S., McCasland J. S., Brunstrom J. E., and Pearlman A. L. (1996) Automated recognition and mapping of immunolabelled neurons in the developing brain. J. Microsc. 183 (Pt 3), 241–256.

    Article  CAS  Google Scholar 

  • Horton J. C. and Hocking D. R. (1996) Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys. J. Neurosci. 16, 7228–7239.

    CAS  Google Scholar 

  • Inoué S. and Spring K. R. Video microscopy—the Fundamentals. 1997, Plenum, New York.

    Google Scholar 

  • Johnson T. E., Defries J. C., and Markel P. D. (1992) Mapping quantitative trait loci for behavioral traits in the mouse. Behav. Genet. 22, 635–653.

    Article  CAS  Google Scholar 

  • Kanes S., Dains K., Cipp L., et al. (1996) Mapping the genes for haloperidol-induced catalepsy. J. Pharmacol. Exp. Ther. 277, 1016–1025.

    CAS  Google Scholar 

  • Kozinska D., Tretiak O., Nissanov J., and Ozturk C. (1997) Multidimensional alignment using the Euclidean distance transform. Graphical Models and Image Processing 59, 373–387.

    Article  Google Scholar 

  • Lander E. S. and Schork N. J. (1994) Genetic dissection of complex traits. Science 265, 2037–2048.

    Article  CAS  Google Scholar 

  • Lipp H. P., Schwegler H., Crusio W. E., et al. (1989) Using genetically-defined rodent strains for the identification of hippocampal traits relevant for two-way avoidance behavior: a non-invasive approach. Experientia 45, 845–859.

    Article  CAS  Google Scholar 

  • Lu L., Airey D. C., and Williams R. W. (2001) Complex trait analysis of the hippocampus: mapping and biometric analysis of two novel gene loci with specific effects on hippocampal structure in mice. J. Neurosci. 21, 3503–3514.

    CAS  Google Scholar 

  • MacKenzie-Graham A., Jones E. S., Shattuck D. W., Dinov I., Bota M., and Toga A. W. (2003) The informatics of a C57BL/6 Mouse Brain Atlas. Neuroinformatics 1, 397–410.

    Article  Google Scholar 

  • Manly K. F., Cudmore R. H. J., and Meer J. M. (2001) Map Manager QTX, cross-platform software for genetic mapping. Mammalian Genome 12, 930–932.

    Article  CAS  Google Scholar 

  • Martone M. E., Zhang S., Gupta A., et al. (2003) The cell-centered database: a database for multiscale structural and protein localization data from light and electron microscopy. Neuroinformatics 1, 379–396

    Article  Google Scholar 

  • Mazziotta J., Toga A., Evans A., et al. (2001a) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1293–1322.

    Article  CAS  Google Scholar 

  • Mazziotta J., Toga A., Evans A., et al. (2001b) A four-dimensional probabilistic atlas of the human brain. J. Am. Med. Inform. Assoc. 8, 401–430.

    CAS  Google Scholar 

  • Moinuddin S. M. and Tada T. (2000) Study of cerebrospinal fluid flow dynamics in TGF-beta 1 induced chronic hydrocephalic mice. Neurol. Res. 22, 215–222.

    CAS  Google Scholar 

  • Nissanov J. and McEachron D. L. (1991) Advances in image processing for autoradiography. J. Chem. Neuroanat. 4, 329–342.

    Article  CAS  Google Scholar 

  • Nissanov J., Bertrand L., and Tretiak O. (2001) Cryosectioning distortion reduction using tape support. Microsc. Res. Tech. 53, 239–240.

    Article  CAS  Google Scholar 

  • Oldenbourg R., Terada H., Tiberio R., and Inoue S. (1993) Image sharpness and contrast transfer in coherent confocal microscopy. J. Microsc. 172 (Pt 1), 31–39.

    CAS  Google Scholar 

  • Pakkenberg B. and Gundersen H. J. (1997) Neocortical neuron number in humans: effect of sex and age. J. Comp. Neurol. 384, 312–320.

    Article  CAS  Google Scholar 

  • Plomin R., McClearn G. E., Gora-Maslak G., and Neiderhiser J. M. (1991) Use of recombinant inbred strains to detect quantitative trait loci associated with behavior. Behav. Genet. 21, 99–116.

    Article  CAS  Google Scholar 

  • Rosen G. D. and Williams R. W. (2001) Complex trait analysis of the mouse striatum: Independent QTLs modulate volume and neuron number. BMC Neuroscience. 2, 5.

    Article  CAS  Google Scholar 

  • Stensaas S. S., Eddington D. K., and Dobelle W. H. (1974) The topography and variability of the primary visual cortex in man. J. Neurosurg. 40, 747–755.

    Article  CAS  Google Scholar 

  • Takahashi J. S., Pinto L. H., and Vitaterna M. H. (1994) Forward and reverse genetic approaches to behavior in the mouse. Science 264, 1724–1733.

    Article  CAS  Google Scholar 

  • Talairach J. and Tournoux P. (1988) Co-Planar Stereotaxic Atlas of the Human Brain, 1st ed., Thieme Medical Publishers, Inc., New York.

    Google Scholar 

  • Toga A. W., ed. (1999) Brain Warping, Academic Press, New York.

    Google Scholar 

  • Toga A. W. and Thompson P. M. (1999) An Introduction to Brain Warping, in Brain Warping (Toga A. W., ed), pp. 1–26. Academic Press, New York.

    Google Scholar 

  • Waks A. and Tretiak O. J. (1990a) Recognition of regions in brain sections. Computerized Medical Imaging and Graphics 14, 341–352.

    Article  CAS  Google Scholar 

  • Waks A. and Tretiak O. J. (1990b) Image segmentation through robst edge detection. In: IEEE International Conference on Robust Computer Vision, Washington DC, pp. 302–324.

  • Wang J., Williams R. W., and Manly K. F. (2003) WebQTL: Web-based complex trait analysis. Neuroinformatics 1, 299–308.

    Article  Google Scholar 

  • Williams R. W. (2000) Mapping genes that modulate mouse brain development: A quantitative genetic approach, in Mouse Brain Development (Goffinet A. and Rakic P., eds), Springer, Berlin, pp. 21–49.

    Google Scholar 

  • Williams R. W. and Rakic P. (1988) Three-dimensional counting: An accurate and direct method to estimate numbers of cells in sectioned material. J. Comp. Neurol. 278, 344–352.

    Article  CAS  Google Scholar 

  • Williams R. W. and Herrup K. (1988) The control of neuron number. Annu. Rev. Neurosci. 11, 423–453.

    Article  CAS  Google Scholar 

  • Williams R. W., Cavada C., and Reinoso-Suarez F. (1993) Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat. J. Neurosci. 13, 208–228.

    CAS  Google Scholar 

  • Williams R. W., Strom R. C., and Goldowitz D. (1998) Natural variation in neuron number in mice is linked to a major quantitative trait locus on Chr 11. J. Neurosci. 18, 138–146.

    CAS  Google Scholar 

  • Williams R. W., Strom R. C., Rice D. S., and Goldowitz D. (1996) Genetic and environmental control of variation in retinal ganglion cell number in mice. J. Neurosci. 16, 7193–7205.

    CAS  Google Scholar 

  • Williams R. W., Gu J., Qi S., and Lu L. (2001a) The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biol. 2, 0046.

    Google Scholar 

  • Williams R. W., Lu L., Kulkarnik A., Zhou G., and Airey D. C. (2001b) Genetic dissection of the olfactory bulbs of mice: QTLs on chromosomes 4, 6, 11, and 17 modulate bulb size. Behav. Genet. 31, 61–77.

    Article  CAS  Google Scholar 

  • Wyss-Coray T., Feng L., Masliah E., et al. (1995) Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice over-expressing transforming growth factor-beta 1. Am. J. Pathol. 147, 53–67.

    CAS  Google Scholar 

  • Zygourakis C. C. and Rosen G. D. (2003) Quantitative trait loci modulate ventricular size in the mouse brain. J. Comp. Neurol. 461, 362–369.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn D. Rosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, G.D., La Porte, N.T., Diechtiareff, B. et al. Informatics center for mouse genomics. Neuroinform 1, 327–342 (2003). https://doi.org/10.1385/NI:1:4:327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:1:4:327

Index Entries

Navigation