Skip to main content
Log in

Ion channels and amino acid transporters support the growth and invasion of primary brain tumors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The malignant growth of glial support cells causes gliomas, highly invasive, primary brain tumors that are largely resistant to therapy. Individual tumor cells spread by active cell migration, invading diffusely into the normal brain. This process is facilitated by Cl channels that endow glioma cells with an enhanced ability to quickly adjust their shape and cell volume to fit the narrow and tortuous extracellular brain spaces. Once satellite tumors enlarge, their growth is limited by the spatial constraints imposed by the bony cavity of the skull and spinal column. Glioma cells circumvent this limitation by active destruction of peritumoral neural tissue through the release of glutamate, inducing peritumoral seizures and ultimately excitotoxic neuronal cell death. Hence, primary brain tumors support their unusual biology by taking advantage of ion channels and transporters that are designed to support ion homeostatic functions in normal brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Reier P. J. (1986) Gliosis following CNS injury: The anatomy of astrocytic scars and their influences on axonal elongation, in Astrocytes, Cell Biology and Pathology of Astrocytes, eds., Fedoroff, S. and Vernadakis A., Academic Press, Orlando, pp. 263–324.

    Google Scholar 

  2. Ridet J. L., Malhotra S. K., Privat A., and Gage F. H. (1997) Reactive astrocytes: cellular and molecular cues to biological function. TINS 20, 570–577.

    PubMed  CAS  Google Scholar 

  3. Unger J. W. (1998) Glial reaction in aging and Alzheimer’s disease. Microsc. Res. Tech. 43, 24–28.

    Article  PubMed  CAS  Google Scholar 

  4. Collins V. P. (2002) Cellular mechanisms targeted during astrocytoma progression. Cancer Lett. 188, 1–7.

    Article  PubMed  CAS  Google Scholar 

  5. Von Deimling A., Louis D. N., and Wiestler O. D. (1995) Molecular pathways in the formation of gliomas. Glia 15, 328–338.

    Article  Google Scholar 

  6. Tang P., Steck P. A., and Yung W. K. A. (1997) The autocrine loop of TGF-α/EGFR and brain tumors. J. Neurooncol. 35, 303–314.

    Article  PubMed  CAS  Google Scholar 

  7. Maher E. A., Furnari F. B., Bachoo R. M., Rowitch D. H., Louis D. N., Cavenee W. K., and DePinho R. A. (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev. 15, 1311–1333.

    Article  PubMed  CAS  Google Scholar 

  8. Holland E. C., Hively W. P., DePinho R. A., and Varmus H. E. (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 12, 3675–3685.

    PubMed  CAS  Google Scholar 

  9. Forsyth P. A., Wong H., Laing T. D., et al. (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br. J. Cancer 79, 1828–1835.

    Article  PubMed  CAS  Google Scholar 

  10. Gary S. C., Kelly G. M., and Hockfield S. (1998) BEHAB/brevican: A brain-specific lectican implicated in gliomas and glial cell motility. Curr. Opin. Neurobiol. 8, 576–581.

    Article  PubMed  CAS  Google Scholar 

  11. Thorsen F. and Tysnes B. B. (1997) Brain tumor cell invasion, anatomical and biological considerations. Anticancer Research 17, 4121–4126.

    PubMed  CAS  Google Scholar 

  12. Laerum O. D., Bjerkvig R., Steinsvag S. K., and de Ridder L. (1984) Invasiveness of primary brain tumors. Cancer Metastasis Reviews 3, 223–236.

    Article  PubMed  CAS  Google Scholar 

  13. Giese A., Rief M. D., Loo M. A., and Berens M. E. (1994) Determinants of human astrocytoma migration. Cancer Res. 54, 3897–3904.

    PubMed  CAS  Google Scholar 

  14. Manning T. J., Jr., Parker J. C., and Sontheimer H. (2000) Role of lysophosphatidic acid and rho in glioma cell motility. Cell Motil Cytoskeleton 45, 185–199.

    Article  PubMed  CAS  Google Scholar 

  15. Vargova L., Homola A., Zamecnik J., Tichy M., Benes V., and Sykova E. (2003) Diffusion parameters of the extracellular space in human gliomas. Glia 42, 77–88.

    Article  PubMed  Google Scholar 

  16. Soroceanu L., Manning T. J., Jr., and Sontheimer H. (1999) Modulation of glioma cell migration and invasion using Cl and K+ ion channel blockers. J. Neurosci. 19, 5942–5954.

    PubMed  CAS  Google Scholar 

  17. Takano T., Lin J. H., Arcuino G., Gao Q., Yang J., and Nedergaard M. (2001) Glutamate release promotes growth of malignant gliomas. Nat. Med. 7, 1010–1015.

    Article  PubMed  CAS  Google Scholar 

  18. Ye Z. C. and Sontheimer H. (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res. 59, 4383–4391.

    PubMed  CAS  Google Scholar 

  19. Choi D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634.

    Article  PubMed  CAS  Google Scholar 

  20. Rothstein J. D. (1996) Excitotoxicity hypothesis. Neurology 47, S19–25.

    PubMed  CAS  Google Scholar 

  21. Ransom C. B., O’Neal J. T., and Sontheimer H. (2001) Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. J. Neurosci. 21, 7674–7683.

    PubMed  CAS  Google Scholar 

  22. Jentsch T. J., Friedrich T., Schriever A., and Yamada H. (1999) The CLC chloride channel family. Pflügers Arch. 437, 783–795.

    Article  PubMed  CAS  Google Scholar 

  23. Jentsch T. J., Stein V., Weinreich F., and Zdebik A. A. (2002) Molecular structure and physiological function of chloride channels. Physiol. Rev. 82, 503–568.

    PubMed  CAS  Google Scholar 

  24. Olsen M. L., Schade S., Lyons S. A., Amarillo M. D., and Sontheimer H. (2003) Expression of voltage-gated chloride channels in human glioma cells. J. Neurosci. 2, 5572–5582.

    Google Scholar 

  25. Greger R. (1990) Chloride channel blockers. Methods in Enzymology 191, 793–810.

    Article  PubMed  CAS  Google Scholar 

  26. DeBin J. A., Maggio J. E., and Strichartz G. R. (1993) Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. 264, C361–369.

    PubMed  CAS  Google Scholar 

  27. Ullrich N. and Sontheimer H. (1996) Biophysical and pharmacological characterization of chloride currents in human astrocytoma cells. Am. J. Physiol. 270, C1511-C1521.

    PubMed  CAS  Google Scholar 

  28. Lyons S. A., O’Neal J, and Sontheimer H. (2002) Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39, 162–173.

    Article  PubMed  Google Scholar 

  29. (2002) TransMolecular receives FDA approval for 131-I-TM-601 IND application. Expert Rev. Anticancer Ther. 2, p. 139.

  30. Dalton S., Gerzanich V., Chen M., Dong Y., Shuba Y., and Simard J. M. (2003) Chlorotoxinsensitive Ca2+-activated Cl channel in type R2 reactive astrocytes from adult rat brain. Glia 42, 325–339.

    Article  PubMed  Google Scholar 

  31. Ullrich N., Bordey A., Gillespie G. Y., and Sontheimer H. (1998) Expression of voltage-activated chloride currents in acute slices of human gliomas. Neurosci. 83, 1161–1173.

    Article  CAS  Google Scholar 

  32. Deshane J., Garner C. C., and Sontheimer H. (2003) Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J. Biol. Chem. 278, 4135–4144.

    Article  PubMed  CAS  Google Scholar 

  33. Duszyk M., Shu Y., Sawicki G., Radomski A., Man S. F., and Radomski M. W. (1999) Inhibition of matrix metalloproteinase MMP-2 activates chloride current in human airway epithelial cells. Can. J. Physiol. Pharmacol. 77, 529–535.

    Article  PubMed  CAS  Google Scholar 

  34. Amberger V. R., Avellana-Adalid V., Hensel T., Baron-Van Evercooren A., and Schwab M. E. (1997) Oligodendrocyte-type 2 astrocyte progenitors use a metalloendoprotease to spread and migrate on CNS myelin. Europ. J. Neurosci. 9, 151–162.

    Article  CAS  Google Scholar 

  35. Levison S. W., Chuang C., Abramson B. J., and Goldman J. E. (1993) The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated. Dev. 119, 611–622.

    CAS  Google Scholar 

  36. Simpson P. B. and Armstrong R. C. (1999) Intracellular signals and cytoskeletal elements involved in oligodendrocyte progenitor migration. Glia 26, 22–35.

    Article  PubMed  CAS  Google Scholar 

  37. Noble M. and Mayer-Pröschel M. (1997) Growth factors, glia and gliomas. J. Neurooncol. 35, 193–209.

    Article  PubMed  CAS  Google Scholar 

  38. Andersen P., Dingledine R., Gjerstad L., Langmoen I. A., and Laursen A. M. (1980) Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid. J. Physiol. 305, 279–296.

    PubMed  CAS  Google Scholar 

  39. LoTurco J. J., Owens D. F., Heath M. J. S., Davis M. B. E., and Kriegstein A. R. (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298.

    Article  PubMed  CAS  Google Scholar 

  40. Hammoud M. A., Sawaya R., Shi W., Thall P. F., and Leeds N. E. (1996) Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J. Neurooncol. 27, 65–73.

    Article  PubMed  CAS  Google Scholar 

  41. Danbolt N. C. (2001) Glutamate uptake. Prog. Neurobiol. 65, 1–105.

    Article  PubMed  CAS  Google Scholar 

  42. Ye Z. C., Rothstein J. D., and Sontheimer H. (1999) Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J. Neurosci. 19, 10,767–10,777.

    CAS  Google Scholar 

  43. Rossi D. J., Oshima T., and Attwell D. (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403, 316–321.

    Article  PubMed  CAS  Google Scholar 

  44. Sato H., Tamba M., Ishii T., and Bannai S. (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J. Biol. Chem. 274, 11,455–11,458.

    CAS  Google Scholar 

  45. Tang P., Steck P. A., and Yung W. K. (1997) The autocrine loop of TGF-alpha/EGFR and brain tumors. J. Neurooncol. 35, 303–314.

    Article  PubMed  CAS  Google Scholar 

  46. Iida M., Sunaga S., Hirota N., Kuribayashi N., Sakagami H., Takeda M., and Matsumoto K. (1997) Effect of glutathione-modulating compounds on hydrogen-peroxide-induced cytotoxicity in human glioblastoma and glioma cell lines. J. Cancer Res. Clin. Oncol. 123, 619–622.

    Article  PubMed  CAS  Google Scholar 

  47. Gochenauer G. E. and Robinson M. B. (2001) Dibutyryl-cAMP (dbcAMP) up-regulates astrocytic chloride-dependent l-[3H]glutamate transport and expression of both system xc(−) subunits. J. Neurochem. 78, 276–286.

    Article  PubMed  CAS  Google Scholar 

  48. Oberndorfer S., Schmal T., Lahrmann H., Urbanits S., Lindner K., and Grisold W. (2002) The frequency of seizures in patients with primary brain tumors or cerebral metastases. Wien Klin. Wochenschr. 114, 911–916.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sontheimer, H. Ion channels and amino acid transporters support the growth and invasion of primary brain tumors. Mol Neurobiol 29, 61–71 (2004). https://doi.org/10.1385/MN:29:1:61

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:29:1:61

Index Entries

Navigation