Skip to main content
Log in

Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A heavy metal responsive gene PvSR3 (GenBank accession number U54703) encoding an acid dehydrin was isolated from a mercuric chloride-treated bean (Phaseolus vulgaris L.) leaf cDNA library by differential screening using cDNAs derived from treated and untreated plants. The PvSR3 cDNA is 981-bp long and has a 606-bp open-reading frame with a 202-residue-deduced amino acid sequence. The PvSR3 sequence contains two conserved repeats of the characteristic lysine-rich K segment (EKKGIMDKIKEKLPG) preceded by an 8-serine residue stretch, whereas the Y segment (DEYGNP) conserved motif is absent. The deduced protein has a calculated molecular weight of 23 kDa and an isoelectric point of 5.2. Sequence similarity and comparative analysis showed that PvSR3 shares 70 and 73% similarity with the dehydrin of poplar and pepper, respectively. Southern hybridizations indicated that PvSR3 was a low copy-number gene. Northern blot analysis revealed that PvSR3 mRNA was weakly detected in seedling leaves. However, the gene expression was strongly stimulated by heavy metals, such as mercury, cadmium, arsenic, and coppper, whereas virus infection and salt had little effect on it. In contrast, PvSR3 was not responsive to drought or abscisic acid (ABA), and was downregulated by UV radiation. Furthermore, PvSR3 was upregulated by the exogenous signaling molecules, including salicylic acid (SA) and hydrogen peroxide (H2O2). It is suggested that PvSR3 is extremely related to heavy metal stress, and might play an important role in metal detoxification and resistance to the damage caused by heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y. X., Chai T. Y., and Burkard G. (1999) Heavy metal tolerance mechanisms in plants. Acta Bot. Sin. (in Chinese), 41, 453–457.

    CAS  Google Scholar 

  2. Ercal N., Gurer-Orhan H., Aykin-Burns N. (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem. 1, 529–539.

    Article  PubMed  CAS  Google Scholar 

  3. Clemens S. (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212, 475–486.

    Article  PubMed  CAS  Google Scholar 

  4. Zenk M. H. (1996) Heavy metal detoxification in higher plants. Gene 179, 21–30.

    Article  PubMed  CAS  Google Scholar 

  5. Thomas J. C., Davies E. C., Malick F. K., et al. (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog. 19, 273–280.

    Article  PubMed  CAS  Google Scholar 

  6. Li, Y., Dhankher, O. P., Carreira L., et al. (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol. 45, 1787–1797.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, J., Bae, H., Jeong J., et al. (2003) Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol. 133, 589–596.

    Article  PubMed  CAS  Google Scholar 

  8. Zhu, Y. L., Pilon-Smits, E. A., Tarun, A. S., et al. (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gammaglutamylcysteine synthetase. Plant Physiol. 121, 1169–1178.

    Article  PubMed  CAS  Google Scholar 

  9. Chai, T. Y., Didierjean, L., Burkard, G., et al. (1998) Expression of a green tissue-specific 11 kDa prolinerich protein gene in bean in response to heavy metals. Plant Sci. 133, 47–56.

    Article  Google Scholar 

  10. Chai, T. Y. and Zhang, Y. X. (2000) Cloning of cDNA and expression analysis of DnaJ-like protein gene under heavy metals in bean. Prog. Nat. Sci. 10, 198–203.

    CAS  Google Scholar 

  11. Suzuki, N., Yamaguchi, Y., Koizumi, N., et al. (2002) Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. Plant J. 32, 165–173.

    Article  PubMed  CAS  Google Scholar 

  12. Chai T. Y., Chen Q., Zhang Y. X., et al. (2003) Cadmium resistance in transgenic tobacco plants enhanced by expressing bean heavy metal-responsive gene PvSR2. Sci. China (C) 46, 623–630.

    CAS  Google Scholar 

  13. Kr&uuml:ger, C., Berkowitz, O., Stephan, U. W., et al. (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J. Biol. Chem. 277, 25062–25069.

    Article  Google Scholar 

  14. Close, T. J. (1996) Dehydrins: emergence of a biochemical role of a family of plant. Physiol. Plant 97, 795–803.

    Article  CAS  Google Scholar 

  15. Close, T. J. (1997) Dehydrins: a commonality in the response of plants to dehydrin and low temperature. Physiol. Plant 100, 291–296.

    Article  CAS  Google Scholar 

  16. Borovskii, G. B., Stupnikova, I. V., Antipina, A. I., et al. (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol. 2, 5.

    Article  PubMed  Google Scholar 

  17. Goday, A., Jensen, A. B., Culianez-Macia, F. A., et al. (1994) The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6, 351–360.

    Article  PubMed  CAS  Google Scholar 

  18. Goday, A., Lunar, R., Torres-Schumann, S., et al. (1994) Expression, tissue distribution and subcellular localization of dehydrin TSA14 in salt-stressed tomato plants. Plant Mol. Biol. 26, 1921–1934.

    Article  Google Scholar 

  19. Martin, J., Geromanos, S., Tempst, P., et al. (1993) Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES. Nature 366, 279–282.

    Article  PubMed  CAS  Google Scholar 

  20. Campbell, S. A. and Close, T. J. (1997) Dehydrins, genes, proteins, and associations with phenotypic traits. New Phytol. 137, 61–74.

    Article  CAS  Google Scholar 

  21. Zhu, B., Choi, D. W., Fenton, R., et al. (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol. Gen. Genet. 264, 145–153.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang, L., Ohta, A., Takagi, M., et al. (2000) Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA protein. J. Biochem. 127, 611–616.

    PubMed  CAS  Google Scholar 

  23. Imai, R., Chang, L., Ohta, A., et al. (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170, 243–248.

    Article  PubMed  CAS  Google Scholar 

  24. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  25. Robertson, M. and Chandler, P. M. (1994) A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression. Plant Mol. Biol. 26, 805–816.

    Article  PubMed  CAS  Google Scholar 

  26. van Berkel, J., Salamini, F., and Gebhardt, C. (1994) Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive genes. Plant Physiol. 104, 445–452.

    Article  PubMed  Google Scholar 

  27. Chung, E., Kim, S. Y., Yi, S. Y., et al. (2003) Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants. Mol. Cell. 15, 327–332.

    CAS  Google Scholar 

  28. Caruso, A., Morabito, D., Delmotte, F., et al. (2002) Dehydrin induction during drought and osmotic stress in Populus. Plant Physiol. Biochem. 40, 1033–1042.

    Article  CAS  Google Scholar 

  29. Jensen, A. B., Goday, A., Figueras, M., et al. (1998) Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J. 13, 691–697.

    Article  PubMed  CAS  Google Scholar 

  30. Danyluk, J., Perron, A., Houde, M., et al. (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10, 623–638.

    Article  PubMed  CAS  Google Scholar 

  31. Heyen, B. J., Alsheikh, M. K., Smith, E. A., et al. (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol. 130, 675–687.

    Article  PubMed  CAS  Google Scholar 

  32. Rouse, D. T., Marotta, R., and Parish, R. W. (1996) Promoter and expression studies on an Arabidopsis thaliana dehydrin gene. FEBS Let. 381, 252–256.

    Article  CAS  Google Scholar 

  33. Porat, R., Pasentsis, K., Rozentzvieg, D., et al. (2004) Isolation of a dehydrin cDNA from orange and grape-fruit citrus fruit that is specifically induced the combination of heat followed by chilling temperatures. Physiol Plant 120, 256–264.

    Article  PubMed  CAS  Google Scholar 

  34. Svensson, J., Palva, E. T., and Welin, B. (2000) Purification of recombinant Arabidopsis dehydrins by metal ion affinity chromatography. Protein Expr. Purif. 20, 169–178.

    Article  PubMed  CAS  Google Scholar 

  35. Alsheikh, M. K., Heyen, B. J., and Randall, S. K. (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J. Biol. Chem. 278, 40882–40889.

    Article  PubMed  CAS  Google Scholar 

  36. Metwally, A., Finkemeier, I., Georgi, M., and Dietz, K. J. (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol. 132, 272–281.

    Article  PubMed  CAS  Google Scholar 

  37. Hara, M., Terashima, S., and Fukaya, T. (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217, 290–298.

    PubMed  CAS  Google Scholar 

  38. Hara, M., Fujinaga, M., and Kuboi, T. (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol. Biochem. 42, 657–662.

    Article  PubMed  CAS  Google Scholar 

  39. Chini, A., Grant, J. J., Seki, M., et al. (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J. 38, 810–822.

    Article  PubMed  CAS  Google Scholar 

  40. Li, Z., Zhao, L., Kai, G., et al. (2004) Cloning and expression analysis of a water stress-induced gene from Brassica oleracea. Plant Physiol. Biochem. 42, 789–794.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuanyao Chai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Li, J., Yu, F. et al. Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals. Mol Biotechnol 32, 205–217 (2006). https://doi.org/10.1385/MB:32:3:205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:32:3:205

Index Entries

Navigation