Skip to main content
Log in

Dynamic processing of neuropeptides

Sequential conformation shaping of neurohypophysial preprohormones during intraneuronal secretory transport

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neurohypophysial preprohormones are single polypeptide chains folded into 3/4 domains, namely a signal prepeptide (18/20 residues), a hormone peptide (9 residues), and a propeptide neurophysin-copeptin (93/134 residues). Neuro-hormone and neurophysin contain 1 and 7 disulfide bridges, respectively, whose pairing depends on correct primordial folding within the endoplasmic reticulum (ER) compartment (pH 7.0) of hypothalamic magnocellular neurons. During intracellular travel in the secretory pathway from ER to secretory granules (SG), the precursor is submitted to successive processings (glycosylation, proteolysis, amidation) in distinct compartments, leading to domain separation and reshaping. In particular the hormone domain is subjected, in the SG, pH 5.5, to a 4-enzyme cascade in order to reach the bioactive conformation. We have purified SG from rat and ox neurohypophyses and characterized: 1) the processed domains (neurohormone, neurophysin, copeptin); 2) the four processing enzymes acting successively at the level of the processing sequence, namely a Lys-Arg calcium-dependent endopeptidase, a carboxypeptidase B-like enzyme, a peptidyl-glycine monooxygenase and a peptidyl-hydroxyglycine lyase (amidating enzyme).

A reconstitution of the processing has been carried out in vitro using purified granular enzymes and synthetic nonactive prohormone peptides, vasopressinyl-Gly-Lys-Arg, vasotocinyl-Gly, and oxytocinyl-Gly. Vasopressin (yield 17% at pH 6.0, 30% at pH 8.0) has been identified by both coelution in high-performance liquid chromotography (HPLC) and bioactivity.

In the homozygote mutant Brattleboro rats, a single nucleotide deletion in the gene entails a complete change in aminoacid sequence of neurophysin from residue 64 onwards. A misrouting in the ER or a misprocessing in the SG could occur so that neither vasopressin nor associated-neurophysin are found in the neurophypophysis, this lack determining diabetes insipidus. In addition there is a 50% decrease of the Lys-Arg-endoendopeptidase activity in the SG of the homozygote Brattleboro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acher R. and Chauvet J. (1953) La structure de la vasopressine de boeuf. Biochim. Biophys. Acta 12, 487–488.

    Article  PubMed  CAS  Google Scholar 

  • Acher R. and Chauvet J. (1995) The neurohypophysial endocrine regulatory cascade: precursors, mediators, receptors, and effectors. Frontiers Neuroendocrinol. 16, 237–289.

    Article  CAS  Google Scholar 

  • Anfinsen C. B. (1973) Principles that govern the folding of protein chains. Science 181, 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Chauvet J., Rouillé Y., Spang A., Cardine A. M., and Acher R. (1992) Processing endopeptidase deficiency in neurohypophysial secretory granules of the diabetes insipidus (Brattleboro) rat. Bioscience Rep. 12, 445–451.

    Article  CAS  Google Scholar 

  • Chauvet M. T., Chauvet J., and Acher R. (1981) Identification of rat neurophysins: complete amino acid sequences of MSEL-and VLDV-neurophysins. Biochem. Biophys. Res. Commun. 103, 595–603.

    Article  PubMed  CAS  Google Scholar 

  • Chen L., Rose J. P., Breslow E., Yang D., Chang W.-R., Furey W. F. Jr., et al. (1991) Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 Å determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom. Proc. Natl. Acad. Sci. USA 88, 4240–4244.

    Article  PubMed  CAS  Google Scholar 

  • Dobson C. M. and Ellis R. J. (1998) Protein folding and misfolding inside and outside the cell. EMBO J. 17, 5251–5254.

    Article  PubMed  CAS  Google Scholar 

  • Du Vigneaud (1952) A Trail of Research. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Eipper B. A., Stoffers, D. A., and Mains R. E. (1992) The biosynthesis of neuropeptides: peptide alpha-amidation. Ann. Rev. Neurosci. 15, 57–85.

    Article  PubMed  CAS  Google Scholar 

  • Fielbal A.-M., Rouillé Y., Chauvet J., Chauvet M. T., and Acher R. (1988) Isolation of neurosecretory granules containing vasopressin and MSEL-neurophysin from guinea pig neurointermediate pituitary. Neuropeptides 11, 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Fricker L. D., Das B., and Angeletti R. H. (1990) Identification of the pH- dependent membrane anchor of carboxypeptidase E (EC 3.4.17.10). J. Biol. Chem. 255, 2476–2482.

    Google Scholar 

  • Frydman J. and Hartl F. U. (1996) Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms. Science 272, 1497–1501.

    Article  PubMed  CAS  Google Scholar 

  • Land H., Grez M., Ruppert S., Schmale H., Rehbein M., Richter D., and Schütz G. (1983) Deduced amino acid sequence from the bovine oxytocin-neurophysin I precursor cDNA. Nature 1983, 342–344.

    Article  Google Scholar 

  • Land H., Schütz G., Schmale H., and Richter D. (1982) Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin- neurophysin II precursor. Nature 295, 299–303.

    Article  PubMed  CAS  Google Scholar 

  • Marcinkiewicz M., Day R., Seidah N. G., and Chretien M. (1993) Ontogeny of the prohormone convertases PC1 and PC2 in the mouse hypophysis and their colocalization with corticotropin and alpha-melanotropin. Proc. Natl. Acad. Sci. USA 90, 4922–4926.

    Article  PubMed  CAS  Google Scholar 

  • Michel G., Chauvet J., Chauvet M. T., and Acher R. (1987) One-step processing of the amphibian vasotocin precursor: structure of a frog (Rana esculenta) “big” neurophysin. Biochem. Biophys. Res. Commun. 149, 538–544.

    Article  PubMed  CAS  Google Scholar 

  • Ohagi S., LaMendola J., LeBeau M. M., Espinosa R., Takeda J., Smeekens S. P., et al. (1992) Identification and analysis of the gene encoding human PC2, a prohormone convertase expressed in neuroendocrine tissues. Proc. Natl. Acad. Sci. USA 89, 4977–4981.

    Article  PubMed  CAS  Google Scholar 

  • Rose J. P., Wu C.-K., Hsiao C.-D., Breslow E., and Wang B.-C. (1996) Crystal structure of the neurophysinoxytocin complex. Nat. Struct. Biol. 3, 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Rauch F., Lenznert C., Nürnberg P., Frömmel C., and Vetter U. (1996) A novel mutation in the coding region for neurophysin II is associated with autosomal dominant neurohypophyseal diabetes insipidus. Clin. Endocrinol. 44, 45–51.

    Article  CAS  Google Scholar 

  • Rittig S., Robertson G. L., Siggaard C., Kovacs L., Gregersen N, Nyborg J., and Pedersen E. B. (1996) Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophysial diabetes insipidus. Am. J. Hum. Genet. 58, 107–117.

    PubMed  CAS  Google Scholar 

  • Rouillö Y., Spang A., Chauvet J., and Acher R. (1992a) Evidence for distinct dibasic processing endopeptidases with Lys-Arg and Arg-Arg specificities in neurohypophysial secretory granules. Biochem. Biophys. Res. Commun. 183, 128–137.

    Article  Google Scholar 

  • Rouillö Y., Spang A., Chauvet J., and Acher R. (1992b) A neurosecretory granule Lys-Arg Ca2+-dependent endopeptidase putatively involved in prooxytocin and provasopressin processing. Neuropeptides 22, 223–228.

    Article  Google Scholar 

  • Rouillé Y., Chauvet J., and Acher R. (1992c) Partial conversion of vasopressinyl-Gly-Lys-Arg into pharmacologically active vasopressin through secretory granule carboxypeptidase E and alpha-amidating processing enzyme. Biochem. Int. 26, 739–746.

    PubMed  Google Scholar 

  • Scharrer E. (1928) Die Lichtemfindlichkeit blinder Elritzen (Untersuchungen über das Zwischenhirn der Fishe. I). Z Vgl Physiol 7, 1–38.

    Article  Google Scholar 

  • Schmale H. and Richter D. (1984) Single deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 308, 705–709.

    Article  PubMed  CAS  Google Scholar 

  • Simon S. M. (1995) Protein-conducting channels for the translocation of proteins into and across membranes. Cold Spring Harbor Symposia on Quantitative Biology, Vol. LX, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 57–59.

    Google Scholar 

  • Tuppy H. (1953) The amino acid sequence in oxytocin. Biochim. Biophys. Acta 11, 449–450.

    Article  PubMed  CAS  Google Scholar 

  • Van Leeuwen F., Van der Beek E., Seger M., Burbach P., and Ivell R. (1989) Proc. Natl. Acad. Sci. USA 86, 6417–6420.

    Article  PubMed  Google Scholar 

  • Walter P., Gilmore R., Müller M., and Blobel G. (1982) The protein translocation machinery of the endoplasmic reticulum. Phil. Trans. R. Soc. Lond B 300, 225–228.

    Article  CAS  Google Scholar 

  • Ward D. T., Hammond T. G., and Harris H. W. (1999) Modulation of vasopressin-elicited water transport by trafficking of aquaporin 2-containing vesicles. Ann. Rev. Physiol. 61, 683–697.

    Article  CAS  Google Scholar 

  • Wickner S., Maurizi M. R., and Gottesman S. (1999) Post-translational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893.

    Article  PubMed  CAS  Google Scholar 

  • Wood S. P., Tickle I. J., Treharne A. M., Pitts J. E., Mascarenhas Y., Li I., et al. (1986) Crystal structure analysis of deamino-oxytocin conformational flexibility and receptor binding. Science 232, 633–636.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acher, R., Chauvet, J. & Rouille, Y. Dynamic processing of neuropeptides. J Mol Neurosci 18, 223–228 (2002). https://doi.org/10.1385/JMN:18:3:223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:18:3:223

Index Entries

Navigation