Skip to main content
Log in

Implication of APP secretases in notch signaling

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Signaling via notch receptors and their ligands is an evolutionary ancient and highly conserved mechanism governing cell-fate decisions throughout the animal kingdom. Upon ligand binding, notch receptors are subject to a two-step proteolysis essential for signal transduction. First, the ectodomain is removed by an enzyme cleaving near the outer-membrane surface (“site2”). Consecutively, the notch intracellular domain is liberated by a second protease cutting within the transmembrane sequence (“site3”). The intracellular domain is then transferred to the nucleus to act as a transcriptional coactivator. The proteases involved in notch receptor activation are shared with other proteins undergoing regulated intramembrane proteolysis, with intriguing parallels to APP. Specifically, site3 cleavage of Notch, as well as γ-secretase processing of APP depend both critically on presenilins 1 and 2. Moreover, ADAM 10 and ADAM 17, the proteases proposed to perform site2 cleavage, are also the most probable candidate α-secretases to cleave APP.

While the biological significance of APP processing remains to be further elucidated, interference with notch signaling has been shown to have severe consequences both in small animal models as well as in humans. Thus, a growing number of long known genetic syndromes like Alagille syndrome or Fallot’s tetralogy can be caused by mutations of genes relevant for the notch signaling pathway. Likewise, the anticipated interference of γ-secretase inhibitors with site3 cleavage may turn out to be a major obstacle for this therapeutic approach to Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artavanis-Tsakonas S., Rand M. D., and Lake R. J. (1999) Notch signaling: cell fate control and signal integration in development. Science 284, 770–776.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister R., Leimer U., Zweckbronner I., Jakubek C., Grunberg J., and Haass C. (1997) Human presenilin-1, but not familial Alzheimer’s disease (FAD) mutants, facilitate Caenorhabditis elegans Notch signalling independently of proteolytic processing. Genes Funct. 1, 149–159.

    PubMed  CAS  Google Scholar 

  • Berechid B. E., Thinakaran G., Wong P. C., Sisodia S. S., and Nye J. S. (1999) Lack of requirement for presenilin1 in Notch1 signaling. Curr. Biol. 9, 1493–1496.

    Article  PubMed  CAS  Google Scholar 

  • Blaumueller C. M., Qi H., Zagouras P., and Artavanis-Tsakonas S. (1997) Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Borchelt D. R., Ratovitski T., van Lare J., Lee M. K., Gonzales V., Jenkins N. A., et al. (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron. 19, 939–945.

    Article  PubMed  CAS  Google Scholar 

  • Brou C., Logeat F., Gupta N., Bessia C., LeBail O., Doedens J. R., et al. (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrinmetalloprotease TACE. Mol. Cell. 5, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Brown M. S., Ye J., Rawson R. B., and Goldstein J. L. (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Bulman M. P., Kusumi K., Frayling T. M., McKeown C., Garrett C., Lander E. S., et al. (2000) Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat. Genet. 24, 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Bush G., diSibio G., Miyamoto A., Denault J. B., Leduc R., and Weinmaster G. (2001) Ligand-induced signaling in the absence of furin processing of Notch1. Dev. Biol. 229, 494–502.

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum, J. D., et al. (1998) Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273, 27,765–27,767.

    Article  CAS  Google Scholar 

  • Cai H., Wang Y., McCarthy D., Wen H., Borchelt D. R., Price D. L., and Wong P. C. (2001) BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat. Neurosci. 4, 233–234.

    Article  PubMed  CAS  Google Scholar 

  • Capell A., Grunberg J., Pesold B., Diehlmann A., Citron M., Nixon R., et al. (1998) The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. J. Biol. Chem. 273, 3205–3211.

    Article  PubMed  CAS  Google Scholar 

  • Citron M., Westaway D., Xia W., Carlson G., Diehl T., Levesque G., et al. (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat. Med. 3, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Conlon R. A., Reaume A. G., and Rossant J. (1995) Notch1 is required for the coordinate segmentation of somites. Development 121, 1533–1545.

    PubMed  CAS  Google Scholar 

  • De Strooper B. and Annaert W. (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J. Cell Sci. 113, 1857–1870.

    PubMed  Google Scholar 

  • De Strooper B. and Annaert W. (2001) Where Notch and Wnt signaling meet. The presenilin hub. J. Cell Biol. 152, F17-F20.

    Article  PubMed  Google Scholar 

  • De Strooper B., Annaert W., Cupers P., Saftig P., Craessaerts K., Mumm J. S., et al. (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522.

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B., Saftig P., Craessaerts K., Vanderstichele H., Guhde G., Annaert W., et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez D. I., De Strooper B., and Annaert W. (2001) Secretases as therapeutic targets for the treatment of Alzheimer’s disease. Amyloid 8, 124–142.

    PubMed  CAS  Google Scholar 

  • Donoviel D. B., Hadjantonakis A. K., Ikeda M., Zheng H., Hyslop P. S., and Bernstein A. (1999) Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13, 2801–2810.

    Article  PubMed  CAS  Google Scholar 

  • Duff K., Eckman C., Zehr C., Yu X., Prada C. M., Pereztur J., et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713.

    Article  PubMed  CAS  Google Scholar 

  • Ellisen L. W., Bird J., West D. C., Soreng A. L., Reynolds T. C., Smith S. D., and Sklar J. (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661.

    Article  PubMed  CAS  Google Scholar 

  • Eldadah Z. A., Hamosh A., Biery N. J., Montgomery R. A., Duke M., Elkins R., and Dietz H. C. (2001) Familial Tetralogy of Fallot caused by mutation in the jagged1 gene. Hum. Mol. Genet. 10, 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Elser W. P., Kimberly W. T., Ostaszewski B. L., Diehl T. S., Moore C. L., Tsai J. Y., et al. (2000) Transition-state analogue inhibitors of gamma-secretase bind directly to presenilin-1. Nat. Cell Biol. 2, 428–434.

    Article  CAS  Google Scholar 

  • Fryxell K. J., Soderlund M., and Jordan T. V. (2001) An animal model for the molecular genetics of CADASIL. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 32, 6–11.

    PubMed  CAS  Google Scholar 

  • Hadland B. K., Manley N. R., Su D., Longmore G. D., Moore C. L., Wolfe M. S., et al. (2001) Gammasecretase inhibitors repress thymocyte development. Proc. Natl. Acad. Sci. USA 98, 7487–7491.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann D., De Strooper B., and Saftig P. (1999) Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr. Biol. 9, 719–727.

    Article  PubMed  CAS  Google Scholar 

  • Heber S., Herms J., Gajic V., Hainfellner J., Aguzzi A., Rulicke T., et al. (2000) Mice with combined gene knockouts reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci. 20, 7951–7963.

    PubMed  CAS  Google Scholar 

  • Herreman A., Hartmann D., Annaert W., Saftig P., Craessaerts K., Serneels L., et al. (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc. Natl. Acad. Sci. USA 96, 11,872–11,877.

    Article  CAS  Google Scholar 

  • Herreman A., Serneels L., Annaert W., Collen D., Schoonjans L., and De Strooper B. (2000) Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nat. Cell Biol. 2, 461–462.

    Article  PubMed  CAS  Google Scholar 

  • Joutel A., Vahedi K., Corpechot C., Troesch A., Chabriat H., Vayssiere C., et al. (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350, 1511–1515.

    Article  PubMed  CAS  Google Scholar 

  • Joutel A., Andreux F., Gaulis S., Domenga V., Cecillon M., Battail N., et al. (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J. Clin. Invest. 105, 597–605.

    Article  PubMed  CAS  Google Scholar 

  • Kiernan A. E., Ahituv N., Fuchs H., Balling R., Avraham K. B., Steel K. P., and Hrabe de Angelis M. (2001) The Notch ligand Jagged1 is required for inner ear sensory development. Proc. Natl. Acad. Sci. USA 98, 3873–3878.

    Article  PubMed  CAS  Google Scholar 

  • Koike H. S., Koike H., Tomioka S., Sorimachi H., Saido T. C., Maruyama K., et al. (1999) Membrane-anchored metalloprotease MDC9 has an alpha-secretase activity responsible for processing the amyloid precursor protein. Biochem. J. 343, 371–375.

    Article  PubMed  CAS  Google Scholar 

  • Krebs L. T., Xue Y., Norton C. R., Shutter J. R., Maguire M., Sundberg J. P., et al. (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14, 1343–1352.

    PubMed  CAS  Google Scholar 

  • Kulic L., Walter J., Multhaup G., Teplow D. B., Baumeister R., Romig H., et al. (2000) Separation of presenilin function in amyloid beta-peptide generation and endoproteolysis of Notch. Proc. Natl. Acad. Sci. USA 97, 5913–5918.

    Article  PubMed  CAS  Google Scholar 

  • Kusumi K., Sun E. S., Kerrebrock A. W., Bronson R. T., Chi D. C., Bulotsky M. S., et al. (1998) The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat. Genet. 19, 274–278.

    Article  PubMed  CAS  Google Scholar 

  • Lammich S., Kojro E., Postina R., Gilbert S., Pfeiffer R., Jasionowski M., et al. (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA 96, 3922–3927

    Article  PubMed  CAS  Google Scholar 

  • Levitan D. and Greenwald I. (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377, 351–354.

    Article  PubMed  CAS  Google Scholar 

  • Levitan D., Doyle T. G., Brousseau D., Lee M. K., Thinakaran G., Slunt H. H., et al. (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 93, 14,940–14,944.

    Article  CAS  Google Scholar 

  • Li X. and Greenwald I. (1997) HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proc. Natl. Acad. Sci. USA 94, 12,204–12,209.

    CAS  Google Scholar 

  • Li L., Krantz I. D., Deng Y., Genin A., Banta A. B., Collins C. C., et al. (1997) Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat. Genet. 16, 243–251.

    Article  PubMed  CAS  Google Scholar 

  • Li Y. M., Xu M., Lai M. T., Huang Q., Castro J. L., DiMuzio-Mower J., et al. (2000) Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694.

    Article  PubMed  CAS  Google Scholar 

  • Li Y. M., Lai M. T., Xu M., Huang Q., DiMuzio-Mower J., Sardana M. K., et al. (2000) Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc. Natl. Acad. Sci. USA 97, 6138–6143.

    Article  PubMed  CAS  Google Scholar 

  • Logeat F., Bessia C., Brou C., LeBail O., Jarriault S., Seidah N. G., and Israel A. (1998) The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl. Acad. Sci. USA 95, 8108–8112.

    Article  PubMed  CAS  Google Scholar 

  • Luo Y., Bolon B., Kahn S., Bennett B. D., Babu-Khan S., Denis P., et al. (2001) Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat. Neurosci. 4, 231–232.

    Article  PubMed  CAS  Google Scholar 

  • Moohr O. L. (1919) Genetics 4, 252.

    Google Scholar 

  • Muller U., Cristina N., Li Z. W., Wolfer D. P., Lipp H. P., Rulicke T., et al. (1994) Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell 79, 755–765.

    Article  PubMed  CAS  Google Scholar 

  • Mumm J. S., Schroeter E. H., Saxena M. T., Griesemer A., Tian X., Pan D. J., et al. (2000) A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol. Cell. 5, 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Naruse S., Thinakaran G., Luo J. J., Kusiak J. W., Tomita T., Iwatsubo T., et al. (1998) Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 21, 1213–1221.

    Article  PubMed  CAS  Google Scholar 

  • Niwa M., Sidrauski C., Kaufman R. J., and Walter P. (1999) A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 99, 691–702.

    Article  PubMed  CAS  Google Scholar 

  • Pan D. and Rubin G. M. (1997) Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90, 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Peschon J. J., Slack J. L., Reddy P., Stocking K. L., Sunnarborg S. W., Lee D. C., et al. (1998) An essential role for ectodomain shedding in mammalian development. Science 282, 1281–1284.

    Article  PubMed  CAS  Google Scholar 

  • Petit A., Bihel F., da Costa C. A., Pourquie O., Checler F., and Kraus J. L. (2001) New protease inhibitors prevent gamma-secretase-mediated production of Abeta40/42 without affecting Notch cleavage. Nat. Cell Biol. 3, 507–511.

    Article  PubMed  CAS  Google Scholar 

  • Poulson D. F. (1937) Chromosomal deficiencies and the embryonic development of Drosophila melanogaster Proc. Natl. Acad. Sci. USA 23, 133–137.

    Article  PubMed  CAS  Google Scholar 

  • Pourquie O. (2000) Skin development: delta laid bare. Curr. Biol. 10, R425-R428.

    Article  PubMed  CAS  Google Scholar 

  • Price D. L., Tanzi R. E., Borchelt D. R., and Sisodia S. S. (1998) Alzheimer’s disease: genetic studies and transgenic models. Annu. Rev. Genet. 32, 461–493.

    Article  PubMed  CAS  Google Scholar 

  • Qi H., Rand M. D., Wu X., Sestan N., Wang W., Rakic P., Xu T., and Artavanis-Tsakonas S. (1999) Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science 283, 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Rand M. D., Grimm L. M., Artavanis-Tsakonas S., Patriub V., Blacklow S. C., Sklar J., and Aster J. C. (2000) Calcium depletion dissociates and activates heterodimeric notch receptors. Mol. Cell Biol. 20, 1825–1835.

    Article  PubMed  CAS  Google Scholar 

  • Roberds S. L., Anderson J., Basi G., Bienkowski M. J., Branstetter D. G., Chen K. S., et al. (2001) BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Hum. Mol. Genet. 10, 1317–1324.

    Article  PubMed  CAS  Google Scholar 

  • Robey E., Chang D., Itano A., Cado D., Alexander H., Lans D., Weinmaster G., and Salmon P. (1996) An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Robey E. (1997) Notch in vertebrates. Curr. Opin. Genet. Dev. 7, 551–557.

    Article  PubMed  CAS  Google Scholar 

  • Robson MacDonald H., Wilson A., and Radtke F. (2001) Notch1 and T-cell development: insights from conditional knockout mice. Trends Immunol. 22, 155–160.

    Article  Google Scholar 

  • Rooke J., Pan D., Xu T., and Rubin G. M. (1996) KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis Science 273, 1227–1231.

    Article  PubMed  CAS  Google Scholar 

  • Sakai J., Rawson R. B., Espenshade P. J., Cheng D., Seegmiller A. C., Goldstein J. L., and Brown M. S. (1998) Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell. 2, 505–514.

    Article  PubMed  CAS  Google Scholar 

  • Sato N., Urano F., Yoon Leem J., Kim S. H., Li M., Donoviel D., et al. (2000) Upregulation of BiP and CHOP by the unfolded-protein responseis independent of presenilin expression. Nat. Cell Biol. 2, 863–870.

    Article  PubMed  CAS  Google Scholar 

  • Scheuner D., Eckman C., Jensen M., Song X., Citron M., Suzuki N., et al. (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 2, 864–870.

    Article  PubMed  CAS  Google Scholar 

  • Schroeter E. H., Kisslinger J. A., and Kopan R. (1998) Notch1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766.

    PubMed  CAS  Google Scholar 

  • Shen J., Bronson R. T., Chen D. F., Xia W., Selkoe D. J., and Tonegawa S. (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89, 629–639.

    Article  PubMed  CAS  Google Scholar 

  • Song W., Nadeau P., Yuan M., Yang X., Shen J., and Yankner B. A. (1999) Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc. Natl. Acad. Sci. USA 96, 6959–6963.

    Article  PubMed  CAS  Google Scholar 

  • Soriano S., Kang D. E., Fu M., Pestell R., Chevallier N., Zheng H., and Koo E. H. (2001) Presenilin 1 negatively regulates beta-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of beta-amyloid precursor protein and notch processing. J. Cell Biol. 152, 785–794.

    Article  PubMed  CAS  Google Scholar 

  • Sotillos S., Roch F., and Campuzano S. (1997) The metalloprotease-disintegrin Kuzbanian participates in Notch activation during growth and patterning of Drosophila imaginal discs. Development 124, 4769–4779.

    PubMed  CAS  Google Scholar 

  • Struhl G. and Adachi A. (2000) Requirements for presenilin-dependent cleavage of notch and other trans-membrane proteins. Mol. Cell. 6, 625–636.

    Article  PubMed  CAS  Google Scholar 

  • Struhl G. and Greenwald I. (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525.

    Article  PubMed  CAS  Google Scholar 

  • Struhl G. and Greenwald I. (2001) Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila. Proc. Natl. Acad. Sci. USA 98, 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Swiatek P. J., Lindsell C. E., del Amo F. F., Weinmaster G., and Gridley T. (1994) Notch1 is essential for post-implantation development in mice. Genes Dev. 8, 707–719.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y., Koizumi K., Takagi A., Kitajima S., Inoue T., Koseki H., and Saga Y. (2000) Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat. Genet. 25, 390–396.

    Article  PubMed  CAS  Google Scholar 

  • Tsai H., Hardisty R. E., Rhodes C., Kiernan A. E., Roby P., Tymowska-Lalanne Z., et al. (2001) The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum. Mol. Genet. 10, 507–512.

    Article  PubMed  CAS  Google Scholar 

  • Uyttendaele H., Marazzi G., Wu G., Yan Q., Sassoon D., and Kitajewski J. (1996) Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122, 2251–2259.

    PubMed  CAS  Google Scholar 

  • von Koch C. S., Zheng H., Chen H., Trumbauer M., Thinakaran G., van der Ploeg L. H., et al. (1997) Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol. Aging 18, 661–669.

    Article  Google Scholar 

  • Wen C., Metzstein M. M., and Greenwald I. (1997) SUP-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. Development 124, 4759–4767.

    PubMed  CAS  Google Scholar 

  • Wolfe M. S., Xia W., Ostaszewski B. L., Diehl T. S., Kimberly W. T., and Selkoe D. J. (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398, 513–517.

    Article  PubMed  CAS  Google Scholar 

  • Wong P. C., Zheng H., Chen H., Becher M. W., Sirinathsinghji D. J., Trumbauer M. E., et al. (1997) Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387, 288–292.

    Article  PubMed  CAS  Google Scholar 

  • Ye J., Rawson R. B., Komuro R., Chen X., Dave U. P., Prywes R., et al. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364.

    Article  PubMed  CAS  Google Scholar 

  • Ye Y., Lukinova N., and Fortini M. E. (1999) Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398, 525–529.

    Article  PubMed  CAS  Google Scholar 

  • Yu G., Nishimura M., Arawaka S., Levitan D., Zhang L., Tandon A., et al. (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407, 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Yu G., Chen F., Levesque G., Nishimura M., Zhang D. M., Levesque L., et al. (1998) The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta-catenin. J. Biol. Chem. 273, 16,470–16,475.

    CAS  Google Scholar 

  • Zhang Z., Nadeau P., Song W., Donoviel D., Yuan M., Bernstein A., and Yankner B. A. (2000) Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat. Cell Biol. 2, 463–465.

    Article  PubMed  CAS  Google Scholar 

  • Zhao J., Chen H., Peschon J. J., Shi W., Zhang Y., Frank S. J., and Warburton D. (2001) Pulmonary hypoplasia in mice lacking tumor necrosis factor-alpha converting enzyme indicates an indispensable role for cell surface protein shedding during embryonic lung branching morphogenesis. Dev. Biol. 232, 204–218.

    Article  PubMed  CAS  Google Scholar 

  • Zheng H., Jiang M., Trumbauer M. E., Sirinathsinghji D. J., Hopkins R., Smith D. W., et al. (1995) beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81, 525–531.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wim Annaert or Bart De Strooper.

Additional information

J.T. is Aspirant of the Fonds voor Wetenschappelijk Onderzoek (FWO)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, D., Tournoy, J., Saftig, P. et al. Implication of APP secretases in notch signaling. J Mol Neurosci 17, 171–181 (2001). https://doi.org/10.1385/JMN:17:2:171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:17:2:171

Index Entries

Navigation