Skip to main content
Log in

AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Adenosine monophosphate-activated protein kinase (AMPK) is a member of metabolite-sensing kinase family that plays important roles in responses of muscle cells to metabolic stress. AMPK is a heterotrimer of a catalytic α subunit (α1 or α2), and β (β1 or β2) and γ (γ1 or γ2) subunits. Because the brain has a high metabolic rate and is sensitive to changes in the supply of glucose and oxygen, we investigated the expression of AMPK in rat embryonic and adult brain and its role in modifying neuronal survival under conditions of cellular stress. We report that catalytic (α1 and α2) and noncatalytic (β2 and γ1) subunits of AMPK are present at high levels in embryonic hippocampal neurons in vivo and in cell culture. In the adult rat brain, the catalytic subunits α1 and α2 are present in neurons throughout the brain. The AMPK-activating agent AICAR protected hippocampal neurons against death induced by glucose deprivation, chemical hypoxia, and exposure to glutamate and amyloid β-peptide. Suppression of levels of the AMPK α1 and α2 subunits using antisense technology resulted in enhanced neuronal death following glucose deprivation, and abolished the neuroprotective effect of AICAR. These findings suggest that AMPK can protect neurons against metabolic and excitotoxic insults relevant to the pathogenesis of several different neurodegenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bruce-Keller, A. J., Li, Y. J., Lovell, M. A., Kraemer, P. J., Gary, D. S., Brown, R. R., et al. (1998) 4-Hydroxynonenal, a product of lipid peroxidation, damages cholinergic neurons and impairs visuospatial memory in rats. J. Neuropathol. Exp. Neurol. 57, 257–267.

    PubMed  CAS  Google Scholar 

  • Carling, D. and Hardie, D. G. (1989) The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim. Biophys. Acta. 1012, 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Carling, D., Zammit, V. A., and Hardie, D. G. (1987) A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 223, 217–222.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, B. and Mattson, M. P. (1991) NGF and bFGF protect rat and human central neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 7, 1031–1041.

    Article  PubMed  CAS  Google Scholar 

  • Clough-Helfman, C. and Phillis, J. W. (1990) Brain 5-Aminoimidazole-4-carboxamide riboside (AICAR) administration reduces cerebral ischemic damage in the Mongolian gerbil. Brain Res. Bull. 25, 203–206.

    Article  PubMed  CAS  Google Scholar 

  • Corton, J. M., Gillespie, J. G., and Hardie, D. G. (1994) Role of the AMP-activated protein kinase in the cellular stress response. Curr. Biol. 4, 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Corton, J. M., Gillespie, J. G., Hawley, S. A., and Hardie, D. G. (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229, 558–565.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S. P., Helps, N. R., Cohen, P. T., and Hardie, D. G. (1995) 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett. 377, 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Endres, M., Laufs, U., Huang, Z., Nakamura, T., Huang, P., Moskowitz, M. A., and Liao, J. K. (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 95, 8880–8885.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer, A., Caelles, C., Massot, N., and Hegardt, F. G. (1985) Activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by adenosine 5′-monophosphate. Biochem. Biophys. Res. Commun. 132, 497–504.

    Article  PubMed  CAS  Google Scholar 

  • Foretz, M., Carling, D., Guichard, C., Ferre, P., and Foufelle, F. (1998) AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J. Biol. Chem. 273, 14,767–14,771.

    Article  CAS  Google Scholar 

  • Galinanes, M., Bullough, D., Mullane, K. M., and Hearse, D. J. (1992a) Sustained protection by acadesine against ischemia- and reperfusion-induced injury. Studies in the transplanted rat heart. Circulation 86, 589–597.

    PubMed  CAS  Google Scholar 

  • Galinanes, M., Mullane, K. M., Bullough, D., and Hearse, D. J. (1992b) Acadesine and myocardial protection. Studies of time of administration and dose-response relations in the rat. Circulation 86, 598–608.

    PubMed  CAS  Google Scholar 

  • Galinanes, M., Zhai, X., Bullough, D., Mullane, K. M., and Hearse, D. J. (1995) Protection against injury during ischemia and reperfusion by acadesine derivatives GP-1-468 and GP-1-668. Studies in the transplanted rat heart. Thorac. Cardiovasc. Surg. 110, 752–761.

    Article  CAS  Google Scholar 

  • Gao, G., Fernandez, C. S., Stapleton, D., Auster, A. S., Widmer, J., Dyck, J. R., et al. (1996) Non-catalytic β-and γ-subunit isoforms of the 5′-AMP-activated protein kinase. J. Biol. Chem. 271, 8675–8681.

    Article  PubMed  CAS  Google Scholar 

  • Gao, G., Widmer, J., Stapleton, D., Teh, T., Cox, T., Kemp, B. E., and Witters, L. A. (1995) Catalytic subunits of the porcine and rat 5′-AMP-activated protein kinase are members of the SNF1 protein kinase family. Biochim. Biophys. Acta 1266, 73–82.

    Article  PubMed  Google Scholar 

  • Garton, A. J., Campbell, D. G., Carling, D., Hardie, D. G., Colbran, R. J., and Yeaman, S. J. (1989) Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur. J. Biochem. 179, 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, Y. and Mattson, M. P. (1994) Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury. Exp. Neurol. 128, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Q., Fu, W., Xie, J., Luo, H., Sells, S. F., Geddes, J. W., Bondada, V., Rangnekar, V. M., and Mattson, M. P. (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nat. Med. 4, 957–962.

    Article  PubMed  CAS  Google Scholar 

  • Hardie, D. G. and Carling, D. (1997) The AMP-activated protein kinase: fuel gauge of the mammalian cell? Eur. J. Biochem. 246, 259–273.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, S. A., Davison, M., Woods, A., Davies, S. P., Beri, R. K., Carling, D., and Hardie, D. G. (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem. 271, 27,879–27,887.

    CAS  Google Scholar 

  • Henin, N., Vincent, M. F., Gruber, H. E., and Van den Berghe, G. (1995) Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J. 9, 541–546.

    PubMed  CAS  Google Scholar 

  • Kemp, B. E., Mitchelhill, K. I., Stapleton, D., Michell, B. J., Chen, Z. P., and Witters, L. A. (1999) Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem. Sci. 24, 22–25.

    Article  PubMed  CAS  Google Scholar 

  • Kingma, J. G. Jr., Simard, D., and Rouleau, J. R. (1994) Timely administration of AICA riboside reduces reperfusion injury in rabbits. Cardiovasc. Res. 28, 1003–1007.

    PubMed  CAS  Google Scholar 

  • Kruman, I., Bruce-Keller, A. J., Bredesen, D. E., Waeg, G., and Mattson, M. P. (1997) Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J. Neurosci. 17, 5089–5100.

    PubMed  CAS  Google Scholar 

  • Kudo, N., Gillespie, J. G., Kung, L., Witters, L. A., Schulz, R., Clanachan, A. S., and Lopaschuk, G. D. (1996) Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochim. Biophys. Acta 1301, 67–75.

    PubMed  Google Scholar 

  • Kuo, W. L., Abe, M., Rhee, J., Eves, E. M., McCarthy, S. A., Yan, M., et al. (1996) Raf, but not MEK or ERK, is sufficient for differentiation of hippocampal neuronal cells. Mol. Cell. Biol. 16, 1458–1470.

    PubMed  CAS  Google Scholar 

  • Leclerc, I., Kahn, A., and Doiron, B. (1998) The 5′-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex. FEBS Lett. 431, 180–184.

    Article  PubMed  CAS  Google Scholar 

  • Mark, R. J., Hensley, K., Butterfield, D. A., and Mattson, M. P. (1995) Amyloid β-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15, 6239–6249.

    PubMed  CAS  Google Scholar 

  • Martin, R. L., Lloyd, H. G., and Cowan, A. I. (1994) The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci. 17, 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Guthrie, P. B., Hayes, B. C., and Kater, S. B. (1989) Roles for mitotic history in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosci. 9, 1223–1232.

    PubMed  CAS  Google Scholar 

  • Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E. (1992) β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.

    PubMed  CAS  Google Scholar 

  • Mattson, M. P., Zhang, Y., and Bose, S. (1993) Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp. Neurol. 121, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Lovell, M. A., Furukawa, K., and Markesbery, W. R. (1995) Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J. Neurochem. 65, 1740–1751.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Goodman, Y., Luo, H., Fu, W., and Furukawa, K. (1997) Activation of NF-κB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J. Neurosci. Res. 49, 681–697.

    Article  PubMed  CAS  Google Scholar 

  • Michell, B. J., Stapleton, D., Mitchellhill, K. I., House, C. M., Katsis, F., Witters, L. A., and Kemp, B. E. (1996) Isoform-specific purification and substrate specificity of the 5′-AMP-activated protein kinase. J. Biol. Chem. 271, 28,445–28,450.

    Article  CAS  Google Scholar 

  • Michikawa, M. and Yanagisawa, K. (1999) Inhibition of cholesterol production but not of nonsterol isoprenoid products induces neuronal cell death. J. Neurochem. 72, 2278–2285.

    Article  PubMed  CAS  Google Scholar 

  • Mitchelhill, K. I., Stapleton, D., Gao, G., House, C., Michell, B., Katsis, F., et al. (1994) Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J. Biol. Chem. 269, 2361–2364.

    PubMed  CAS  Google Scholar 

  • Moore, F., Weekes, J., and Hardie, D. G. (1991) Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eur. J. Biochem. 199, 691–697.

    Article  PubMed  CAS  Google Scholar 

  • Ponticos, M., Lu, Q. L., Morgan, J. E., Hardie, D. G., Partridge, T. A., and Carling, D. (1998) Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J. 17, 1688–1699.

    Article  PubMed  CAS  Google Scholar 

  • Rami, A. and Krieglstein, J. (1993) Brain damage caused by ischemia: pathophysiological and pharmacological aspects. Dementia 4, 21–31.

    PubMed  CAS  Google Scholar 

  • Rasmussen, B. B. and Winder, W. W. (1997) Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J. Appl. Physiol. 83, 1104–1109.

    PubMed  CAS  Google Scholar 

  • Sabina, R. L., Patterson, D., and Holmes, E. W. (1985) 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells. J. Biol. Chem. 260, 6107–6114.

    PubMed  CAS  Google Scholar 

  • Salt, I. P., Johnson, G., Ashcroft, S. J., and Hardie, D. G. (1998) AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. Biochem. J. 335, 533–539.

    PubMed  CAS  Google Scholar 

  • Smith-Swintosky, V. L., Pettigrew, L. C., Sapolsky, R. M., Phares, C., Craddock, S. D., Brooke, S. M., and Mattson, M. P. (1996) Metyrapone, an inhibitor of glucocorticoid production, reduces brain injury induced by focal and global ischemia and seizures. J. Cereb. Blood Flow Metab. 16, 585–598.

    Article  PubMed  CAS  Google Scholar 

  • Sprenkle, A. B., Davies, S. P., Carling, D., Hardie, D. G., and Sturgill, T. W. (1997) Identification of Raf-1 Ser621 kinase activity from NIH 3T3 cells as AMP-activated protein kinase. FEBS Lett. 403, 254–258.

    Article  PubMed  CAS  Google Scholar 

  • Stapleton, D., Gao, G., Michell, B. J., Widmer, J., Mitchelhill, K., Teh, T., et al. (1994) Mammalian 5′-AMP-activated protein kinase non-catalytic subunits are homologs of proteins that interact with yeast Snf1 protein kinase. J. Biol. Chem. 269, 29,343–29,346.

    CAS  Google Scholar 

  • Stapleton, D., Mitchelhill, K. I., Gao, G., Widmer, J., Michell, B. J., Teh, T., et al. (1996) Mammalian AMP-activated protein kinase subfamily. J. Biol. Chem. 271, 611–614.

    Article  PubMed  CAS  Google Scholar 

  • Stapleton, D., Woollatt, E., Mitchelhill, K. I., Nicholl, J. K., Fernandez, C. S., Michell, B. J., et al. (1997) AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. FEBS Lett. 409, 452–456.

    Article  PubMed  CAS  Google Scholar 

  • Stefanelli, C., Stanic, I., Bonavita, F., Flamigni, F., Pignatti, C., Guarnieri, C., and Caldarera, C. M. (1998) Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 243, 821–826.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, J. E., Brocklehurst, K. J., Marley, A. E., Carey, F., Carling, D., and Beri, R. K. (1994) Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 353, 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida, A., Yang, X. M., Burckhartt, B., Mullane, K. M., Cohen, M. V., and Downey, J. M. (1994) Acadesine extends the window of protection afforded by ischaemic preconditioning. Cardiovasc. Res. 28, 379–383.

    Article  PubMed  CAS  Google Scholar 

  • Turnley, A. M., Stapleton, D., Mann, R. J., Witters, L. A., Kemp, B. E., and Bartlett, P. F. (1999) Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J. Neurochem. 72, 1707–1716.

    Article  PubMed  CAS  Google Scholar 

  • Vavvas, D., Apazidis, A., Saha, A. K., Gamble, J., Patel, A., Kemp, B. E., et al. (1997) Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J. Biol. Chem. 272, 13,255–13,261.

    Article  CAS  Google Scholar 

  • Velasco, G., Geelen, M. J., and Guzman, M. (1997) Control of hepatic fatty acid oxidation by 5′-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. Arch. Biochem. Biophys. 337, 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. G., Rapp, U. R., and Reed, J. C. (1996) Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87, 629–638.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. G. and Reed, J. C. (1998) Bc1-2, Raf-1 and mitochondrial regulation of apoptosis. Biofactors 8, 13–16.

    PubMed  CAS  Google Scholar 

  • Weekes, J., Ball, K. L., Caudwell, F. B., and Hardie, D. G. (1993) Specificity determinants for the AMP-activated protein kinase and its plant homologue analysed using synthetic peptides. FEBS Lett. 334, 335–339.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Z., Bruce-Keller, A. J., Goodman, Y., and Mattson, M. P. (1998) Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J. Neurosci. Res. 53, 613–625.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Mattson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Culmsee, C., Monnig, J., Kemp, B.E. et al. AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J Mol Neurosci 17, 45–58 (2001). https://doi.org/10.1385/JMN:17:1:45

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:17:1:45

Index Entries

Navigation