Skip to main content
Log in

NMR structure of the p63 SAM domain and dynamical properties of G534V and T537P pathological mutants, identified in the AEC syndrome

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The p63 protein is crucial for epidermal development, and its mutations cause the extrodactyly ectodermal dysplasia and cleft lip/palate syndrome. The three-dimensional solution structure of the p63 sterile α-motif (SAM) domain (residues 505–579), a region crucial to explaining the human genetic disease ankyloblepharon-ectodermal dysplasia-clefting syndrome (AEC), has been determined by nuclear magnetic resonance spectroscopy. The structure indicates that the domain is a monomer with the characteristic five-helix bundle topology observed in other SAM domains. It includes five tightly packed helices with an extended hydrophobic core to form a globular and compact structure. The dynamics of the backbone and the global correlation time of the molecule have also been investigated and compared with the dynamical properties obtained through molecular dynamics simulation. Attempts to purify the pathological G534V and T537P mutants, originally identified in AEC, were not successful because of the occurrence of unspecific proteolytic degradation of the mutated SAM domains. Analysis of the structural dynamic properties of the G534V and T537P mutants through molecular dynamics simulation and comparison with the wild type permits detection of differences in the degree of free-dom of individual residues and discussion of the possible causes for the pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, A., Kaghad, M., Wang, Y., et al. (1998) p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death inducing, and dominant-negative activities. Mol. Cell 2, 305–316.

    Article  PubMed  CAS  Google Scholar 

  2. Kaghad, M., Bonnet, H., Yang, A., et al. (1997) Monoallelically expressed gene related to p53 at 1p35, a region frequently deleted in neuroblastoma and other cancer. Cell 90, 809–819.

    Article  PubMed  CAS  Google Scholar 

  3. Donehower, L. A. and Bradley, A. (1993) The tumor suppressor p53. Biochim. Biophys. Acta 1155, 181–205.

    PubMed  CAS  Google Scholar 

  4. Yang, A. and McKeon, F. (2000) P63 and p73: p53 mimics, menaces and more. Nat. Rev. Mol. Cell Biol. 1, 199–207.

    Article  PubMed  CAS  Google Scholar 

  5. Yang, A., Kaghad, M., Caput, D., and McKeon, F. (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet. 18, 90–95.

    Article  PubMed  Google Scholar 

  6. Melino, G., Lu, X., Gasco, M., Crook, T., and Knight, R. A. (2003) Functional regulation of p63 and p73: development and cancer. Trands Biochem. Sci. 28, 663–670.

    Article  CAS  Google Scholar 

  7. De Laurenzi, V., Costanzo, A., Barcaroli, D., et al. (1998) Two new p73 splice variants gamma and delta, with different transcriptional activity. J. Exp. Med. 188, 1763–1768.

    Article  PubMed  Google Scholar 

  8. Zhu, J., Jiang, J., Zhou, W., and Chen, X. (1998) The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res. 58, 5061–5065.

    PubMed  CAS  Google Scholar 

  9. Di Como, C. J., Gaiddon, C., and Prives, C. (1999) p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol. Cell. Biol. 19, 1438–1449.

    PubMed  Google Scholar 

  10. Melino, G., De Laurenzi, V., and Vousden, K. H. (2002) p73: friend or foe in tumorigenesis. Nat. Rev. Cancer 2, 605–615.

    Article  PubMed  CAS  Google Scholar 

  11. Yang, A., Schweitzer, R., Sun, D., et al. (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718.

    Article  PubMed  CAS  Google Scholar 

  12. Mills, A. A., Zheng, B., Wang, X. J., Vogel, H., Roop, D. R., and Bradley, A. (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713.

    Article  PubMed  CAS  Google Scholar 

  13. Yang, A., Walker, N., Bronson, R., et al. (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404, 99–103.

    Article  PubMed  CAS  Google Scholar 

  14. Van Bokhoven, H. and McKeon, F. (2002) Mutations in the p53 homolog p63: allele-specific developmental syndromes in humans. Trends Mol. Med. 8, 133–139.

    Article  PubMed  Google Scholar 

  15. Bork, P. and Koonin, E. V. (1998) Predicting functions from protein sequences-where are the bottlenecks. Nat. Genet. 18, 313–318.

    Article  PubMed  CAS  Google Scholar 

  16. Thanos, C. D. and Bowie, J. U. (1999) p53 family members p63 and p73 are SAM domain containing proteins. Protein. Sci. 8, 1708–1710.

    Article  PubMed  CAS  Google Scholar 

  17. Schultz, J., Ponting, C. P., Hofmann, K., and Bork, P. (1997) SAM as a protein interaction domain involved in development regulation. Protein Sci. 6, 249–253.

    Article  PubMed  CAS  Google Scholar 

  18. Stapleton, D., Balan, I., Pawson, Y., and Sicheri, F. (1999) The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat. Struct. Biol. 6, 44–49.

    Article  PubMed  CAS  Google Scholar 

  19. Thanos, C. D., Goodwill, K. E., and Bowie, J. U. (1999) Oligomeric structure of the human EphB2 receptor SAM domain. Science 283, 833–836.

    Article  PubMed  CAS  Google Scholar 

  20. Chi, S. W., Ayed, A., and Arrowsmith, C. H. (1999) Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain. EMBO J. 18, 4438–4445.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, W. K., Bycroft, M., Foster, N. W., Buckle, A. M., Fersht, A. R., and Chen, Y. W. (2001) Structure of the C-terminal SAM domain of human p73. Acta Crystallogr. D Biol. Crystallogr. 57, 545–551.

    Article  PubMed  CAS  Google Scholar 

  22. Thanos, C. D. and Bowie, J. U. (1999) p53 Family members p63 and p73 are SAM domain-containing proteins. Protein Sci. 8, 1708–1710.

    PubMed  CAS  Google Scholar 

  23. Falconi, M., Melino, G., and Desideri, A. (2004) Molecular dynamics simulation of the C-terminal sterile alpha-motif domain of human p73(:evidence of a dynamical relationship between helices 3 and 5. Biochem. Biophys. Res. Commun. 316, 1037–1042.

    Article  PubMed  CAS  Google Scholar 

  24. McGrath, A. J., Duijf, P. H. G., Doetsch, V., et al. (2001) Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63. Hum. Mol. Gen. 10, 221–229.

    Article  PubMed  CAS  Google Scholar 

  25. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. and Bax, A. (1995) NMR pipe: a multidimensional spectral processing based on UNIX pipes. J. Biomol. NMR 6, 277–293.

    Article  PubMed  CAS  Google Scholar 

  26. Johnson, B. A. and Blevins, R. A. (1994) NMR VIEW—a computer program for the visualization and analysis of NMR Data. J. Biomol. NMR 4, 603–614.

    Article  CAS  Google Scholar 

  27. Bax, A. and Grzesiek, S. (1993) Methodological advances in protein NMR. Acc. Chem. Res. 26, 131–137.

    Article  CAS  Google Scholar 

  28. Ikura, M., Kay, L. E., and Bax, A. (1991) Improved three-dimensional 1H-13C-1H correlation spectroscopy of a 13C-labeled protein using constant-time evolution. J. Biomol. NMR 1, 299–304.

    Article  PubMed  CAS  Google Scholar 

  29. Bazzo, R., Cicero, D. O., and Barbato, G. (1995) A new 3D HCACO Pulse sequence with optimized Resolution and Sensitivity. Application to the 21 kDa protein human interleukin-6. J. Magn. Reson. B 107, 189–191.

    Article  PubMed  CAS  Google Scholar 

  30. Clore, G. M., Bax, A., Driscoll, P. C., Wingfield, P. T., and Gronenborn, A. M. (1990) Assignment of the side-chain 1H-and 13C resonances of interleukin-1 beta using double and triple resonance heteronuclear three-dimensional NMR spectroscopy. Biochemistry 29, 8172–8184.

    Article  PubMed  CAS  Google Scholar 

  31. Wishart, D. S. and Sykes, B. D. (1994) Chemical shift as a tool for structure determination. Methods Enzymol. 239, 363–392.

    Article  PubMed  CAS  Google Scholar 

  32. Kuboniwa, H., Grzesiek, S., Delaglio, F., and Bax, A. (1994) Measurement of HNNA J coupling in calcium free calmodulin using new 2D and 3D water flip back methods. J. Biomol. NMR 4, 871–878.

    Article  PubMed  CAS  Google Scholar 

  33. Hansen, M. R., Rance, M. and Pardi, A. (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  34. Ottinger, M., Delaglio, F., and Bax, A. (1998) Measurement of J and Dipolar couplings from simplified two-dimensional NMR spectra. J. Magn. Reson. 131, 373–378.

    Article  Google Scholar 

  35. Koenig, B. W., Hu, J. S., Ottiger, M., Bose, S., Hendler, R. W., and Bax, A. (1999) NMR measurement of dipolar couplings in proteins aligned by transient binding to purple membrane fragments. J. Am. Chem. Soc. 121, 1385–1386.

    Article  CAS  Google Scholar 

  36. Schwieters, C. D., Kuszewski, J. J., Tjandra, N., and Clore, G. M. (2003) The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73.

    Article  PubMed  CAS  Google Scholar 

  37. Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486.

    Article  PubMed  CAS  Google Scholar 

  38. stone, M. J., Fairbrother, W. J., Palmer, A. G., Reizer, J., Saier, M. H., and Wright P. E. (1992) Backbone dynamics of the Bacillus subtilis Glucose Permease II. A domain determined from 15N relaxation measurements. Biochemistry 31, 4394–4406.

    Article  PubMed  CAS  Google Scholar 

  39. Orekhov, V. Y., Nolde, D. E., Golovanov, A. P., Korzhenev, P. M., and Arseniev, A. S. (1995) Processing of heteronuclear NMR relaxation data with the new software DASHA. Appl. Magn. Reson. 9, 581–588.

    Article  CAS  Google Scholar 

  40. Kay, L. E., Torchia, D. A., and Bax, A. (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: Application to Staphylococcal Nuclease. Biochemistry 28, 8972–8979.

    Article  PubMed  CAS  Google Scholar 

  41. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  42. Cornell, W. D., Cieplak, P., Bayly, C. I., et al. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197.

    Article  CAS  Google Scholar 

  43. Jorgensen, W. L. (1981) Transferable intermolecular potential functions for water alcohols and ethers: application to liquid waters. J. Am. Chem. Soc. 103, 335–340.

    Article  CAS  Google Scholar 

  44. Berendsen, H. J. C., Postma, J. P. M., van Gusteren, W. F., Di Nola, A., and Haak, J. R. (1984) Molecular dynamics with coupling to an external bath. J. Comput. Phys. 81, 3684–3690.

    CAS  Google Scholar 

  45. Darden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald-an N.log(n) method for Ewald sums in large systems. J. Chem. Phys. 98, 10,089–10,092.

    Article  CAS  Google Scholar 

  46. Cheatham, T. E., Miller, J. L., Fox, T., Darden, T. A., and Kollman, P. A. (1995) Molecular dynamics simulation on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA and proteins J. Am. Chem. Soc. 117, 4193–4194.

    Article  CAS  Google Scholar 

  47. Ryckaert, J. P., Ciccotti, G., and Berendsen H. J. C. (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341.

    Article  CAS  Google Scholar 

  48. Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.

    Article  PubMed  CAS  Google Scholar 

  49. Kneller, G. (1991) Superposition of molecular structures using quaternions. Mol. Sim. 7, 113–119.

    Article  CAS  Google Scholar 

  50. Farrow, N., Muhandiram, D. R., Singer, A. U., et al. (1994) Backbone dynamics of a free and phospopeptide-complexed Src homology domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003.

    Article  PubMed  CAS  Google Scholar 

  51. Lipari, G. and Szabo, A. (1982) Model free-approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules: Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559.

    Article  CAS  Google Scholar 

  52. Serra-Pages, C., Kedersha, N. L., Fazikas, L., Medley, Q., Debant, A., and Streuli, M. (1995) The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR interacting protein co-localize at focal adhesions. EMBO J. 14, 2827–2838.

    PubMed  CAS  Google Scholar 

  53. Falconi, M., Parrilli, L., Battistoni, A., and Desideri, A. (2002) Flexibility in monomeric Cu,Zn superoxide dismutase detected by limited proteolysis and molecular dynamics simulation. Proteins 47, 513–520.

    Article  PubMed  CAS  Google Scholar 

  54. Polverino de Laureto, P., Taddei, N., Frare, E., et al. (2003) Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis. J. Mol. Biol. 334, 129–141.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Desideri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cicero, D.O., Falconi, M., Candi, E. et al. NMR structure of the p63 SAM domain and dynamical properties of G534V and T537P pathological mutants, identified in the AEC syndrome. Cell Biochem Biophys 44, 475–489 (2006). https://doi.org/10.1385/CBB:44:3:475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:44:3:475

Index Entries

Navigation