Skip to main content
Log in

Cytotoxicity of copper ions released from metal

Variation with the exposure period and concentration gradients

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this work is to contribute to the elucidation of the cytotoxic process caused by the copper ions released from the biomaterials. Clonal cell lines UMR106 were used in the experiments. Copper ions were obtained from two different sources: copper salts and metal dissolution. Experiments carried out with constant ion concentrations (copper salts) were compared with those with concentrations that vary with time and location (dissolution of the metal). Present results and others previously reported could be interpreted through mathematical models that describe: (1) the variation of concentration of copper ions with time and location within a biofilm and (2) the variation of the killing rate with the concentration of the toxic ion and time. The large number of dead cells found near the copper sample with an average ion concentration below the toxic limit could be interpreted bearing in mind that these cells should be exposed to a local concentration higher than this limit. A logarithmic dependence between the number of cells and exposure time was found for nearly constant ion concentrations. Apparent discrepancies, observed when these results and those of different researchers were contrasted, could be explained considering the dissimilar experimental conditions such as the source of the ions and their local concentration at real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Fernández Lorenzo de Mele and M. C. Cortizo, Electrochemical behaviour of titanium in fluoride-containing saliva, J. Appl. Electrochem. 30, 95–100 (2000).

    Article  Google Scholar 

  2. M. Fernández Lorenzo de Mele and G. Duffó, Tarnish and corrosion of silver-based alloys in synthetic salivas of different compositions, J. Appl. Electrochem. 32, 157–164 (2002).

    Article  Google Scholar 

  3. J. C. Wataha, C. T. Malcolm, and C. T. Hanks, Correlation between cytotoxicity and the elements released by dental casting alloys, Int. J. Prosthodont. 8, 9–14 (1995).

    PubMed  CAS  Google Scholar 

  4. A. Schedle, P. Samorapoompichit, W. Fureder, et al., Metal ion-induced toxic histamine released from human basophils and mast cells, J. Biomed. Mater. Res. 39, 560–567 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. J. C. Wataha, Biocompatibility of dental casting alloys: a review, J. Prosthet. Dent. 83, 223–234 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. M. C. Cortizo, M. A. Fernández, Lorenzo de Mele, and A. M. Cortizo, In vitro evaluation of biocompatibility of dental metal materials on osteoblast cells in culture, Metal Ions Biol. Med. 7, 149–153 (2002).

    CAS  Google Scholar 

  7. M. Kaga, N. S. Seale, T. Hanawa, J. L. Ferracane, D. E. Wite, and T. Okabe, Cytotoxicity of amalgams alloys and their elements and phases, Dent. Mater. 7, 68–72 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. J. C. Wataha, C. T. Hanks, and R. G. Craig, The in vitro effects of metal cations on eukaryotic cell metabolism, J. Biomed. Mater. Res. 25, 1333–1349 (1991).

    Article  Google Scholar 

  9. V. Grill, M. A. Sandrucci, N. Basa, et al., The influence of dental metal alloys on cell proliferation and fibronectin arrangement in human fibroblast cultures, Arch. Oral Biol. 42, 641–647 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. P. Locci, L. Marinucci, C. Lilli, et al., Biocompatibility of alloys used in orthodontics evaluated by cell culture tests, J. Biomed. Mater. Res. 51, 561–568 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. G. Shmalz, H. Langer, and H. Schweikt, Cytotoxicity of dental alloy extracts and corresponding metal salt solutions, J. Dent. Res. 77, 1772–1778 (1998).

    Google Scholar 

  12. M. C. Cortizo, M. Fernández Lorenzo de Mele, and A. M. Cortizo, Biocompatibility of osteoblast-like cells: correlation with metal ions release, Biol. Trace Element Res. 100, 151–168 (2004).

    Article  CAS  Google Scholar 

  13. G. Sjögren and J. Dhal, Cytotoxicity of dental alloys, metals and ceramics assessed by Millipore filter, agar overlay and MTT tests, J. Prosthet. Dent. 84, 229–236 (1983).

    Google Scholar 

  14. N. C. Partridge, D. Alcorn, V. P. Michelangeli, G. Ryan, and T. J. Martin, Morphological and biochemical characterization of four clonal osteogenic sarcoma cell lines of rat origin, Cancer Res. 43, 4308–4312 (1983).

    PubMed  CAS  Google Scholar 

  15. L. D. Quarles, D. A. Yahay, L. W. Lever, R. Caton, and R. J. Wenstrup, Distinct proliferat and differentiated stages of murine MC3T3E1 cells in culture: an in vitro model of osteoblast development, J. Bone Miner. Res. 7, 683–692 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. A. Kapanen, J. Ilvesaro, A. Danilov, J. Ryhänen, P. Lehenkari, and J. Tuukkanen Behaviour of nitinol in osteoblast-like ROS-17 cell cultures, Biomaterials 23, 645–650 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. J. C. Wataha, P. E. Lockwood, A. Schedle, and M. Noda. Ag, Cu, Hg and Ni ions alter the metabolism of human monocytes during extended low-dose exposures, J. Oral Rehabil. 29, 133–139 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. P. S. Stewart, A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilm Biotech. Bioeng. 59, 261–272 (1998).

    Article  CAS  Google Scholar 

  19. M. G. Dodds, K. J. Grobe, and P. S. Stewart, Modeling biofilm antimicrobial resistance, Biotech. Bioeng 68, 456–465 (2000).

    Article  CAS  Google Scholar 

  20. V. Grill, M. A. Sandrucci, R. Di Lenarda, et al., Biocompatibility evaluation of dental metal alloys in expresion of extracellular matrix molecules and its relationship to cell proliferation rates, J. Biomed. Mater. Res. 52, 479–487 (2000)

    Article  PubMed  CAS  Google Scholar 

  21. J. D. Bumgerdner and L. C. Lucas, Cellular response to metallic ions release from nickel-chromium dental alloys, J. Den. Res. 74, 1521–1527 (1993).

    Article  Google Scholar 

  22. International Standards Organization, Biological evaluation of medical devices. Part 5: tests for cytotoxicity: in vitro methods, ISO 10993-5 (1997).

  23. M. C. Cortizo, M. F. L. de Mele, and A. M. Cortizo, Cytotoxicity of copper and silver ions on specific osteoblastic properties, Proceedings of Biomaterial 03, paper 08 (2003).

  24. D. Granchi, E. Cenni, G. Ciapetti, et al., Cell death induced by metal ions: necrosis or apoptosis? J. Mater. Sci. Mater. Med. 9, 31–37 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. P. Nicotera, M. Leist, and E. Ferrando-May. Apoptosis and necrosis: different execution of the same death. Biochem. Soc. Symp. 66, 69–73 (1998).

    Google Scholar 

  26. S. Van Cruchten and W. Van den Broeck, Morphological and biochemical aspects of apoptosis, oncosis and necrosis, Anat. Histol. Embryol. 31, 214–223 (2002).

    Article  PubMed  Google Scholar 

  27. P. S. Stewart, G. A. McFeters, and C. Huang, Biofilm control by antimicrobial agents, in Biofilms II. Process Analysis and Applications, J. D. Bryers, ed., Wiley-Liss, New York, pp. 373–405 (1984).

    Google Scholar 

  28. K. Merrit, S. A. Brown, and N. A. Shankey, The binding of metal salts and corrosion products to cells and proteins in vitro, J. Biomed. Mater. Res. 18, 1005–1015 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortizo, M.C., Lorenzo de Mele, M.F. Cytotoxicity of copper ions released from metal. Biol Trace Elem Res 102, 129–141 (2004). https://doi.org/10.1385/BTER:102:1-3:129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:102:1-3:129

Index Entries

Navigation