Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Network Physiology: How Organ Systems Dynamically Interact

Fig 13

Networks of brain-heart interactions during different physiologic states.

Brain areas are represented by Frontal (Fp1 and Fp2), Central (C3 and C4) and Occipital (O1 and O2) EEG channels. Network nodes with different colors represent seven frequency bands (δ, θ, α, σ, β, γ1, γ2) in the spectral power of each EEG channel. Network links between the heart (red hexagon) and EEG frequency nodes at different locations are determined based on the TDS measure (See Section Methods), and links strength is illustrated by the line thickness. Shown are links with strength ≥5%TDS. Radar-charts centered in each hexagon represent the relative contribution of brain control from different brain areas to the strength of network links during different sleep stages. The length of each segment along each radius in the radar-charts represents TDS coupling strength between the heart and each frequency band at each EEG channel location. These segments are shown in the same color as the corresponding EEG frequency nodes. During W and REM, the brain-heart network interactions are mediated mainly through high-frequency γ1 and γ2 bands (orange and red links), while during LS and DS, the interactions are mediated uniformly through all frequency bands. In contrast to the brain-eye network (Fig 7), the brain-heart network is characterized by relatively symmetric links strength to all six brain areas, as shown by the symmetric radar-charts in each hexagon. A pronounced stratification pattern is observed for the overall strength of network links—stronger links during W and LS (larger hexagons) and weaker links during REM and DS (smaller hexagons). Notably, compared to the brain-eye (Fig 7), brain-chin (Fig 9) and brain-leg networks (Fig 11), there are no links in the brain-heart network during DS (all links <5%TDS).

Fig 13

doi: https://doi.org/10.1371/journal.pone.0142143.g013