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1 Transfer entropy and its estimation from data.

Let {Xt} and {Yt} be two strong-sense stationary stochastic processes. Recall that a stochastic process
is strong-sense stationary if the joint distribution for the process evaluated at finitely many time points is
invariant to an overall timeshift [3]. In our work, these would correspond to the activities, Xt(u) and Xt(v),
of two users u and v. We use the notation Xt

t−k to denote the values of the stochastic process from time
t− k to time t, Xt

t−k = (Xt−k, Xt−(k−1), . . . , Xt−1, Xt). The lag-k transfer entropy [6] of Y on X is defined
as
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[
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t−k
]
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t−k , Y
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t−k

]
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where

H
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t−k
]

= −E
[
log2 p(Xt|Xt−1

t−k)
]

(2)

and

H
[
Xt|Xt−1

t−k , Y
t−1
t−k

]
= −E

[
log2 p(Xt|Xt−1

t−k , Y
t−1
t−k )

]
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are the usual conditional entropies over the conditional (predictive) distributions p(xt|xt−1
t−k) and p(xt|xt−1

t−k, y
t−1
t−k).

This formulation was originally developed in [6], where transfer entropy was proposed as an information the-
oretic measure of directed information flow. Formally, recalling that H

[
Xt|Xt−1

t−k
]

is the uncertainty in Xt

given its values at the previous k time points, and that H
[
Xt|Xt−1

t−k , Y
t−1
t−k

]
is the uncertainty in Xt given the

joint process {(Xt, Yt)} at the previous k time points, transfer entropy measures the reduction in uncertainty
of Xt by including information about Y t−1

t−k , controlling for the information in Xt−1
t−k . By the ‘conditioning

reduces entropy’ result [1]

H[X|Y, Z] ≤ H[X|Y ], (4)

we can see that transfer entropy is always non-negative, and is zero precisely when

H
[
Xt|Xt−1

t−k
]

= H
[
Xt|Xt−1

t−k , Y
t−1
t−k

]
,

in which case knowing the past k lags of Yt does not reduce the uncertainty in Xt. If the transfer entropy is
positive, then {Yt} is considered causal for {Xt} in the Granger sense [2].

When estimating transfer entropy from finite data, we will assume that the process {(Xt, Yt)} is jointly
stationary, which gives us that

p(xt|xt−1
t−k) = p(xk+1|xk

1) (5)

1



and

p(xt|xt−1
t−k, y

t−1
t−k) = p(xk+1|xk

1 , y
k
1 ) (6)

for all t. That is, the predictive distribution only depends on the past, not on when the past is observed.
Given this assumption, we compute estimators for p(xk+1|xk

1) and p(xk+1|xk
1 , y

k
1 ) by ‘counting’: for each

possible marginal and joint past xk
1 and (xk

1 , y
k
1 ), we count the number of times a future of type xk+1 occurs,

and normalize to obtain the appropriate estimators of the one-step-ahead predictive distributions. Call these
estimators p̂(xk+1|xk

1) and p̂(xk+1|xk
1 , y

k
1 ). Then the plug-in estimator for the transfer entropy is

T̂E
(k)

Y→X = Ĥ
[
Xt|Xt−1

t−k
]
− Ĥ

[
Xt|Xt−1

t−k , Y
t−1
t−k

]
(7)

where we use the plug-in estimators Ĥ
[
Xt|Xt−1

t−k
]

and Ĥ
[
Xt|Xt−1

t−k , Y
t−1
t−k

]
for the entropies. It is well known

that the plug-in estimator for entropy is biased [5]. To account for this bias, we use the Miller-Madow
adjustment to the plug-in estimator [4]. For a random variable X taking on finitely many values from an
alphabet X , the Miller-Madow estimator is

H̃[X] = Ĥ[X] +
|X̂ | − 1

2n
(8)

where |X̂ | is the number of observed symbols from the alphabet X and n was the number of samples used
to estimate Ĥ[X]. The definition of transfer entropy (1) can be rewritten in terms of joint entropies as

TE
(k)
Y→X = H[Xt|Xt−1

t−k ]−H[Xt|Xt−1
t−k , Y

t−1
t−k ] (9)

= H[Xt, X
t−1
t−k ]−H[Xt−1

t−k ]−H[Xt, X
t−1
t−k , Y

t−1
t−k ] + H[Xt−1

t−k , Y
t−1
t−k ], (10)

We then apply the Miller-Madow adjustment individually to each of the entropy terms. For example, for
the first term, we have

H̃[Xt, X
t−1
t−k ] = H̃[Xt

t−k] = Ĥ[Xt
t−k] +

|X̂ k+1| − 1

2n
, (11)

where |X̂ k+1| is the number of (k + 1)-tuples we actually observe (of the 2k+1 possible tuples). Doing this
for each term, the overall Miller-Madow estimator for the transfer entropy is

T̃E
(k)

Y→X = H̃[Xt|Xt−1
t−k ]− H̃[Xt|Xt−1

t−k , Y
t−1
t−k ] (12)

= H̃[Xt, X
t−1
t−k ]− H̃[Xt−1

t−k ]− H̃[Xt, X
t−1
t−k , Y

t−1
t−k ] + H̃[Xt−1

t−k , Y
t−1
t−k ]. (13)

One possible problem with this estimator is that it can result in negative estimates of entropies. That usually
occurs when Ĥ is very small. In these cases, we set the estimator to zero.
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