Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

The Sodium-Potassium Pump Controls the Intrinsic Firing of the Cerebellar Purkinje Neuron

Figure 8

With inhibitory synaptic inputs unblocked, some Purkinje cells fire in a repeating bimodal pattern; ouabain block of Na+/K+ pumps switches these cells into the trimodal firing pattern and then a continuous burst mode.

A, Whole cell patch clamp recording from a Purkinje cell (with GABA synaptic inputs intact/unblocked) in control and following the application of 2.5 µM ouabain. The red arrow denotes the time at which we feel that ouabain starts to modify Purkinje cell firing. Panels B, C, D, and E correspond to the labelled parts of panel A. In control, the Purkinje cell activity is in the repeating bimodal pattern (B). Following the addition of ouabain, the firing pattern is switched from bimodal to trimodal (C) and then transitions into continuous bursting (D). After a period, this bursting acquires a gradient of depolarization and ultimately converges upon a somatic depolarization block, in which the only deflections observed are those of Ca2+ spikes that have travelled into the soma from the dendritic arborisation (E). Panel A scaling is encoded in the first scale bar (20 mV, 100 s). Panel B scaling is encoded in the second scale bar (20 mV, 5 s). The scaling of panels C, D and E is encoded in the third scale bar (20 mV, 5 s).

Figure 8

doi: https://doi.org/10.1371/journal.pone.0051169.g008