Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Ellagic Acid Derivatives from Rubus ulmifolius Inhibit Staphylococcus aureus Biofilm Formation and Improve Response to Antibiotics

Figure 8

Use of 220D-F2 as adjunct therapy with conventional antibiotics.

Biofilms were formed on plasma-coated catheters for 24 hours by growth of the test strain (UAMS-1) in BM. Catheters were then placed in fresh BM containing 200 µg/mL 220D-F2 with or without the indicated amounts of antibiotic. In the case of all three antibiotics, the concentrations examined correspond to 1× or 10× the CLSI-defined breakpoint MIC for a sensitive strain of S. aureus. Statistical significance (*, P<0.05; ‡, P<0.001) refers to differences between the cultures treated with antibiotic alone and cultures exposed to both extract 220D-F2 and antibiotic. A. Clindamycin (1×: 0.5 µg/mL; 10×: 5 µg/mL); B. Daptomycin (1×: 1 µg/mL; 10×: 10 µg/mL); C. Oxacillin (1×: 0.5 µg/mL; 10×: 5 µg/mL).

Figure 8

doi: https://doi.org/10.1371/journal.pone.0028737.g008