Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Development and Validation of a Method for Profiling Post-Translational Modification Activities Using Protein Microarrays

Figure 4

In vivo validation of substrates ubiquitylated on protein microarrays.

(A) Ten putative substrates of ubiquitylation identified on the protein microarrays but not reported in the literature were selected for validation of the modification in vivo. Myc- or GST-substrates were co-expressed with HA-ubiquitin in HEK293T cells. HEK293T cell extracts were prepared using denaturing conditions, substrates immunoprecipitated with anti-Myc or anti-GST antibodies, and ubiquitylation detected by immunoblotting with anti-HA antibodies. Empty vector co-expressed with HA-tagged ubiquitin served as control. Substrates indicated in each lane are: 1- ADRBK2, 2- ACVR1B, 3- PIM2, 4- PRKCgamma, 5- KIF2C, 6- RPS6KA5, 7- ITK, 8- EPHA1, 9- TRIM52, and 10- EPHA5. Of 10 substrates 8 were found to be expressed and immunoprecipitated at detectable levels and of these all demonstrated evidence of ubiquitylation in vivo. To best visualize an ubiquitin smear, substrates 1, 2, 3, 4 were separated by 10% SDS-PAGE gels, while larger molecular weight substrates 5, 6, 7, 8 were separated by 6% SDS-PAGE gels. (B) Ubiquitylation of YY1. HEK293T cells were transfected with plasmids that express HA-ubiquitin, endogenous YY1 protein immunoprecipitated from the denatured extracts, and conjugation to ubiquitin determined by Western blot analysis with anti-HA antibodies (left). Immunoprecipitation efficiency was determined by probing blots with anti-YY1 antibodies (right). Immunoprecipitation with IgG antibodies of the same species served as control.

Figure 4

doi: https://doi.org/10.1371/journal.pone.0011332.g004