Skip to main content
Advertisement

< Back to Article

Phosphofructo-1-Kinase Deficiency Leads to a Severe Cardiac and Hematological Disorder in Addition to Skeletal Muscle Glycogenosis

Figure 3

Effects of PFKM deficiency in skeletal muscle markers.

(A) Expression of key genes in oxidative metabolism in skeletal muscle of wild-type and Pfkm−/− mice: Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptor δ (PPARδ), carnitine palmytoiltransferase-1 (M-CPT-1), citrate sinthase (CS) and uncoupling protein 2 (UCP-2). (B) Histochemical staining for succinate dehydrogenase (SDH) and NADH-tetrazolium reductase (NADH-TR) activities in skeletal muscle of wild-type and Pfkm−/− mice. Scale bar 25 µm. (C) Expression of myosin heavy chains in skeletal muscle of wild-type and Pfkm−/− mice: Type I, IIa ,and IIb myosin heavy chains (MyHC-I, MyHC-IIa, MyHC-IIb). (D) Expression of the key genes in skeletal muscle glucose uptake, glucose transporter 4 (GLUT4) and hexokinase-II (HKII), in wild-type and Pfkm−/− mice. (E) Expression of pentose phosphate pathway genes, transaldolase (TALDO1) and transketolase (TK), in skeletal muscle of wild-type and Pfkm−/− mice. Relative expression in A, C, D and E was determined by quantitative PCR analysis of total RNA from skeletal muscle, as indicated in Materials and Methods. Results are mean±SEM of five mice per group. *P<0.05 vs. wild-type.

Figure 3

doi: https://doi.org/10.1371/journal.pgen.1000615.g003