Skip to main content
Advertisement

< Back to Article

Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy

Figure 3

A schematic diagram of cell states and a snapshot of the multicellular model.

(A) each cell lives in the “Normal” state until a HIV virus infects it. An “Infected” cell doesn't release new virions until a certain time point post infection, denoted tprod. At this time point, the cell becomes “Productive” and begins releasing viruses into the extracellular environment until it dies at tdead, when it is marked as “Dead”. The “Infected(+)” and “Infected(−)” states correspond to cells that have been infected by A3G(+) and A3G(−) viruses, respectively. The same concept applies to “Productive(+)” and “Productive(−)” cells. (B) The time of infection is known for each cell in our multicellular model. A snapshot of the multicellular model shows cells with different post-infection ages in the sets of infected and productive cells. Normal cells become infected and enter the set of infected cells as early-infected cells. The late-infected cells become productive and leave the set of infected cells to join the set of productive cells where they are shown as early-productive cells. Finally, late-productive cells die, exit the set of productive cells, and get marked as dead.

Figure 3

doi: https://doi.org/10.1371/journal.pcbi.1002371.g003