Skip to main content
Advertisement

< Back to Article

Phenotypic Consequences of Copy Number Variation: Insights from Smith-Magenis and Potocki-Lupski Syndrome Mouse Models

Figure 4

Differentially expressed genes in SMS and PTLS mouse models.

Distribution of the mapping regions of the top 100 (A) and top 1,000 ranked (B) most differentially expressed transcripts in the cerebellum (C), heart (H), kidney (K), testis (T), and hippocampus (Hi) or present on the array (Affy) of Df(11)17/+ (SMS model, 1n), Dp(11)17/+ (PTLS model, 3n), Df(11)17/Dp(11)17 (2n compound heterozygote), and +/+ (2n) mice (Most-diff dataset, see Figure 1 for a schematic representation of the mouse 11 B2 region of the different mouse models). Proportion of transcripts mapping to the SMS/PTLS rearranged interval (purple), the remainder of mouse chromosome 11 (burgundy), and elsewhere (yellow). Transcripts mapping to the rearranged interval and to the remainder of mouse chromosome 11 are both statistically overrepresented in all tested tissues (all p<1×10−4). Heatmap of the changes in expression levels of the 49 Most-diff transcripts mapping to the SMS/PTLS rearranged interval (C) and the remainder of mouse chromosome 11 (81 transcripts) (D) measured in Df(11)17/+ (d), Dp(11)17/+ (D), and Df(11)17/Dp(11)17 (dD) mice as compared to +/+ individuals in cerebellum (C), heart (H), kidney (K), testis (T), and hippocampus (Hi). The arrowhead and asterisk denote Cops3 and Zfp179 transcripts, respectively. These transcripts were used as anchors in the strain engineering process, thus they are not present in the same number of copies than other SMS/PTLS genes in the mice models (see Figure 1 and text for details).

Figure 4

doi: https://doi.org/10.1371/journal.pbio.1000543.g004