Skip to main content
Log in

LC with Coulometric Detection for Analysis of 5-Methyltetrahydrofolate in Human Plasma

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

An isocratic high-performance liquid chromatographic method with coulometric electrochemical detection has been used for analysis of 5-methyltetrahydrofolate (5-MTHF) in human plasma. A 250 mm × 4.6 mm i.d., 5-μm particle, C18 column was used with 12:88 (v/v) acetonitrile −35 mM sodium phosphate buffer pH 3.8 as mobile phase at a flow rate of 1.0 mL min−1. The method was validated for 5-MTHF plasma concentrations in the range 2.5–100.0 nM. The method was characterized by a good linearity (regression coefficient r ≥ 0.9989) and limits of detection and quantification of 0.72 and 2.16 nM, respectively. Mean recovery at low and high concentrations ranged from 89.1 to 96.3%, respectively, with a relative standard deviation <4.6%. Between-run imprecision (4.2%) was higher than within-run imprecision (3.4%). The proposed separation and detection procedures were successfully applied to analysis of 5-MTHF in human plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Födinger M, Skoupy S, Sunder-Plassmann G (2002) In: Massaro EJ, Rogers JM (eds) Folate in human development. Humana Press, Totowa, pp 91–115

  2. Bolander-Gouaille C, Bottiglieri T (2003) Homocysteine-related vitamins and neuropsychiatric disorders. Springer, France

    Google Scholar 

  3. Alemdaroglu NC (2008) Impact of folate absorption and transport for nutrition and drug targeting. VDM Verlag Dr Müller Akiengesellschaft, Saarbrücken, Germany

    Google Scholar 

  4. Quinlivan ER, Hanson AD, Gregory JF (2006) Anal Biochem 348:163–184. doi:10.1016/j.ab.2005.09.017

    Article  CAS  Google Scholar 

  5. Otani T, Iwasaki M, Sasazuki S, Inoue M (2008) Cancer Causes Control 19:67–74. doi:10.1007/s10552-007-9071-z

    Article  Google Scholar 

  6. Takimoto H, Mito N, Umegaki K, Ishiwaki A, Kusama K, Abe S, Yamawaki M, Fukuoka H, Ohta C, Yoshiike N (2007) Eur J Nutr 46:300–306. doi:10.1007/s00394-007-0667-6

    Article  CAS  Google Scholar 

  7. Lin C, Yin M (2007) Eur J Nutr 46:293–299. doi:10.1007/s00394-007-0665-8

    Article  CAS  Google Scholar 

  8. McDonald SD, Perkins SL, Jodouin CA, Walker MC (2002) Am J Obstet Gynecol 187:620–625. doi:10.1067/mob.2002.125239

    Article  CAS  Google Scholar 

  9. Wallock LM, Tamura T, Mayr CA, Johnston KE, Ames BN, Jacob RA (2001) Fertil Steril 75:252–259. doi:10.1016/S0015-0282(00)01697-6

    Article  CAS  Google Scholar 

  10. Ghandour H, Bagley PJ, Shemin D, Hsu N, Jacques PF, Dworkin L, Bostom AG, Selhub J (2002) Kidney Int 62:2246–2249. doi:10.1046/j.1523-1755.2002.00666.x

    Article  CAS  Google Scholar 

  11. Revell P, O’Doherty MJ, Tang A, Savidge GF (1991) J Intern Med 230:227–231

    Article  CAS  Google Scholar 

  12. Ramaekers VT, Sequeira JM, Artuch R, Blau N, Temudo T, Ormazabal A, Pineda M, Aracil A, Roelens F, Laccone F, Quadros EV (2007) Neuropediatrics 38:179–183. doi:10.1055/s-2007-991148

    Article  CAS  Google Scholar 

  13. Blau N, Opladen T (2008) Folates. In: Blau N, Duran M, Gibson KM (eds) Laboratory guide to methods in biochemical genetics. Springer, Germany, pp 717–724

    Chapter  Google Scholar 

  14. Opladen T, Ramaekers VTh, Heimann G, Blau N (2006) Mol Genet Metab 87:61–65. doi:10.1016/j.ymgme.2005.08.011

    Article  CAS  Google Scholar 

  15. Ramaekers VT, Blau N (2004) Dev Med Child Neurol 46:843–851. doi:10.1017/S0012162204001471

    Article  Google Scholar 

  16. Lucock MD, Daskalakis I, Schorach CJ, Lumb CH, Oliver M, Devitt H, Wold J, Dowell AC, Levene MI (1999) Mol Genet Metab 67:23–35. doi:10.1006/mgme.1999.2813

    Article  CAS  Google Scholar 

  17. Rauh M, Verwied S, Knerr I, Dörr HG, Sönnichsen A, Koletzko B (2001) Amino Acids 20:409–418. doi:10.1007/s007260170037

    Article  CAS  Google Scholar 

  18. Canepa A, Carrea A, Caridi G, Dertenois L, Minniti G, Cerone R, Canini S, Calevo MG, Perfumo F (2003) Pediatr Nephrol 18:225–229

    Google Scholar 

  19. Lucock MD, Daskalakis I, Schorah CJ, Levene NI, Hartley R (1996) Biochem Mol Med 58:93–112. doi:10.1006/bmme.1996.0037

    Article  CAS  Google Scholar 

  20. Chen MF, McIntyre PA, Kertcher JK (1979) J Nucl Med 19:906–912

    Google Scholar 

  21. Chládek J, Šišpera L, Martínková J (2000) J Chromatogr B 744:307–317. doi:10.1016/S0378-4347(00)00257-7

    Article  Google Scholar 

  22. Ormazabal A, García-Cazorla A, Pérez-Dueñas B, Gonzales V, Fernández-Álvarez E, Pineda M, Campistol J, Artuch R (2006) Clin Chim Acta 37:159–162. doi:10.1016/j.cca.2006.03.004

    Article  CAS  Google Scholar 

  23. Garbis SA, Melse-Boonstra A, West CE, van Breemen RB (2001) Anal Chem 73:5358–5364. doi:10.1021/ac010741y

    Article  CAS  Google Scholar 

  24. Hart DJ, Finglas PM, Wolfe CA, Mellon F, Wright AJA, Southon S (2002) Anal Biochem 305:206–213. doi:10.1006/abio.2002.5662

    Article  CAS  Google Scholar 

  25. Kok RM, Smith DEC, Dainty JR, van den Akker JT, Finglas PM, Smulders YM, Jakobs C, De Meer K (2004) Anal Biochem 326:129–138. doi:10.1016/j.ab.2003.12.003

    Article  CAS  Google Scholar 

  26. Nelson BC, Pfeiffer CM, Margolis SA, Nelson CP (2003) Anal Biochem 313:117–127. doi:10.1016/S0003-2697(02)00531-6

    Article  CAS  Google Scholar 

  27. Nelson BC, Saterfield MB, Sniegoski LT, Welch MJ (2005) Anal Chem 77:3586–3593. doi:10.1021/ac050235z

    Article  CAS  Google Scholar 

  28. Bagley PJ, Selhub J (2000) Clin Chem 46:404–411

    CAS  Google Scholar 

  29. Etienne MC, Speziale N, Milano G (1983) Clin Chem 39:82–86

    Google Scholar 

  30. Lankelma J, van der Kleijn E, Jansen M (1980) J Chromatogr 182:35–45

    Article  CAS  Google Scholar 

  31. Lucock MD, Hartley R, Smithells RW (1989) Biomed Chromatogr 3:58–63. doi:10.1002/bmc.1130030204

    Article  CAS  Google Scholar 

  32. Hyland K, Surtees R (1992) Pteridines 3:149–150.

    CAS  Google Scholar 

  33. Flanagan RJ, Perrett D, Whelpton R (2005) Electrochemical detection in HPLC. Analysis of drugs and poisons. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  34. McMaster MC (2007) HPLC: a practical user’s guide, 2nd edn. Wiley, Hoboken

    Google Scholar 

  35. Garofolo F (2004) In: Chan CC, Lee YC, Lam H, Zhang XM (eds) Analytical method validation and instrument performance verification. Wiley, Hoboken, pp 197–220

  36. Eitenmiller RR, Ye L, Landen WO Jr (2008) Vitamin analysis for the health and food sciences, 2nd edn. CRC Press, Boca Raton, pp 443–505

    Google Scholar 

  37. Lucock MD, Green M, Preistnall M, Daskalakis I, Levene MI, Hartley R (1995) Food Chem 53:329–338. doi:10.1016/0308-8146(95)93941-J

    Article  CAS  Google Scholar 

  38. Oey I, Verlinde P, Hendrickx M, Van Loey A (2006) Eur Food Res Technol 223:71–77. doi:10.1007/s00217-005-0123-x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Leszek Marszałł.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marszałł, M.L., Makarowski, R., Hinc, S. et al. LC with Coulometric Detection for Analysis of 5-Methyltetrahydrofolate in Human Plasma. Chroma 69, 829–835 (2009). https://doi.org/10.1365/s10337-009-0952-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-0952-z

Keywords

Navigation