Skip to main content
Log in

Multiple Step Gradient Analysis in Stationary Phase Optimised Selectivity LC for the Analysis of Complex Mixtures

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Stationary phase optimised selectivity liquid chromatography (SOSLC) is an approach to tune a given LC separation by combining different stationary phases in a multi- segment column set-up. The presently available SOSLC optimisation procedure and algorithm are, however, only applicable to isocratic conditions. This is a severe limitation for the analysis of mixtures composed of components covering a broad hydrophobicity range. A strategy is described to circumvent this limitation. The components of a mixture are divided into different groups according to hydrophobicity as elucidated by a gradient analysis on a C18 reversed-phase column. Each group separation is then individually optimised with a specific isocratic mobile phase composition using the original SOSLC strategy. The mobile phase composition thereby only differs in the percentage of organic modifier between the various groups. Finally, a combination of stationary phases that guarantees sufficient selectivity for all the groups is selected and the separation is performed by a multiple step gradient, whereby each level consists of the mobile phase composition applied for the SOSLC optimisation of the individual groups. The multi step gradient approach is demonstrated through the analysis of a mixture of 27 steroids covering a wide range of hydrophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Snyder LR (1978) J Chromatogr Sci 16:223–233

    CAS  Google Scholar 

  2. Snyder LR, Glajch JL, Kirkland JJ (1981) J Chromatogr A 218:299–326. doi:10.1016/S0021-9673(00)82062-2

    Article  CAS  Google Scholar 

  3. Glajch JL, Snyder LR, Kirkland JJ (1982) J Chromatogr A 238:269–277. doi:10.1016/S0021-9673(00)81312-6

    Article  CAS  Google Scholar 

  4. Drouen ACJH, Billiet HAH, Schoenmakers PJ, De Galan J (1982) Chromatographia 16:48–52. doi:10.1007/BF02258868

    Article  CAS  Google Scholar 

  5. Snyder LR, Dolan JW (1986) Am Lab 18:37–46

    CAS  Google Scholar 

  6. Valko K, Snyder LR, Glajch JL (1993) J Chromatogr A 656:501–520. doi:10.1016/0021-9673(93)80816-Q

    Article  CAS  Google Scholar 

  7. Snyder LR, Dolan JW (1998) Chem Anal Warsz 43:495–512

    CAS  Google Scholar 

  8. Dahlmann G, Koeser HJK, Oelert HH (1979) J Chromatogr Sci 17:307–313

    CAS  Google Scholar 

  9. Yu XD, Lin L, Wu CY (1999) Chromatographia 49:567–571. doi:10.1007/BF02467761

    Article  CAS  Google Scholar 

  10. Glajch JL, Gluckman JC, Charikofsky JG, Minor JM, Kirkland JJ (1985) J Chromatogr A 318:23–42. doi:10.1016/S0021-9673(01)90661-2

    Article  CAS  Google Scholar 

  11. Eppert GJ, Heitmann P (2003) LC-GC Eur 16:698–705

    Google Scholar 

  12. Maier HJ, Karpathy OC (1962) J Chromatogr A 8:308–318. doi:10.1016/S0021-9673(01)99265-9

    Article  CAS  Google Scholar 

  13. Wahl JH, McGuffin VL (1989) J Chromatogr A 485:541–556. doi:10.1016/S0021-9673(01)89161-5

    Article  CAS  Google Scholar 

  14. Welsch T, Dornberger U, Lerche D (1993) J High Resolut Chromatogr 16:18–26. doi:10.1002/jhrc.1240160104

    Article  CAS  Google Scholar 

  15. Lukulay PH, McGuffin VL (1995) J Chromatogr A 691:171–185. doi:10.1016/0021-9673(94)01184-G

    Article  CAS  Google Scholar 

  16. Garay F (2000) Chromatographia 51:108–120. doi:10.1007/BF02492792

    Article  Google Scholar 

  17. Dungelova J, Lehotay J, Krupcik J, Welsch T, Armstrong DW (2004) J Chromatogr Sci 42:135–139

    CAS  Google Scholar 

  18. Benicka E, Krupcik J, Lehotay J, Sandra P, Armstrong DW (2005) J Liquid Chromatogr Relat Technol 28:1453–1471. doi:10.1081/JLC-200058326

    Article  CAS  Google Scholar 

  19. Nyiredy Sz, Szucs Z, Szepesy L (2006) Chromatographia 63:S3–S9. doi:10.1365/s10337-006-0833-7

    Article  CAS  Google Scholar 

  20. Nyiredy Sz, Szucs Z, Szepesy L (2007) J Chromatogr A 1157:122–130. doi:10.1016/j.chroma.2007.04.041

    Article  CAS  Google Scholar 

  21. Nyiredy Sz, Meier B, Erdelmeier CAJ, Sticher O (1985) J High Resolut. Chromatogr 4:186–188

    Google Scholar 

  22. Halász I, Gerlach HO, Kroneisen A, Walking P (1968) Zeitschr Anal Chem Fresenius 234:97–108. doi:10.1007/BF00508916

    Article  Google Scholar 

  23. Niessen WMA, Vanvliet HPM, Poppe H (1985) Chromatographia 20:357–363. doi:10.1007/BF02269062

    Article  CAS  Google Scholar 

  24. De Beer M, Lynen F, Sandra P (2007) Book of Abstracts HPLC 2007. IOPMS, Kortrijk, Belgium, p 265

    Google Scholar 

  25. Gostomski I, Braun R, Huber CG (2008) Anal Bioanal Chem 391:279–288. doi:10.1007/s00216-008-1920-4

    Article  CAS  Google Scholar 

  26. Kuehnle M, Rehbein J, Holtin K, Dietrich B, Gradl M, Yeman H, Albert K (2008) J Sep Sci 31:1655–1661. doi:10.1002/jssc.200700604

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pat Sandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Beer, M., Lynen, F., Hanna-Brown, M. et al. Multiple Step Gradient Analysis in Stationary Phase Optimised Selectivity LC for the Analysis of Complex Mixtures. Chroma 69, 609–614 (2009). https://doi.org/10.1365/s10337-008-0942-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0942-6

Keywords

Navigation