Skip to main content
Log in

Foam Floatation-SPE for Separation and Concentration of Trace Ginsenosides

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A foam floatation (FF) process and a solid phase extraction (SPE) process were synchronously applied to the separation and concentration of ginsenosides from extracts of Panax quinquefolius L. The selectivity and sensitivity for the determination of the ginsenosides were improved. The experimental conditions, including volumes of the sample solutions, pH value of sample solution, the flow rate of nitrogen gas and floatation time for FF and elution conditions for SPE were examined and optimized. Average recoveries for protopanaxadiol (PPD) ginsenosides Rc, Rb2, Rb3, Rd, and Rb1 were between 84.5 and 98.8%. The relative standard deviations were lower than 6.73% for the PPD ginsenosides. The results were satisfactory since both FF and SPE were synchronously applied to both the separation and concentration. The proposed method is not only of importance for the concentration and separation of ginsenosides in extracts from P. quinquefolius L., but also of great potential in the separation and concentration of trace compounds in the other solution samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li WK, Fitzloff JF (2002) J Liq Chromatogr Relat Technol 25:17–27

    Article  CAS  Google Scholar 

  2. Yap KYL, Chan SY, Lim CS (2007) Food Res Int 40:643–652. doi:10.1016/j.foodres.2006.11.009

    Article  CAS  Google Scholar 

  3. Shi W, Wang YT, Li J, Zhang HQ, Ding L (2007) Food Chem 102:664–668. doi:10.1016/j.foodchem.2006.05.053

    Article  CAS  Google Scholar 

  4. Wang YT, You JY, Yu Y, Qu CL, Zhang HR, Ding L, Zhang HQ, Li XW (2008) Food Chem 110:161–167. doi:10.1016/j.foodchem.2008.01.028

    Article  CAS  Google Scholar 

  5. de Sousa SR, Oliveira KF, Souza CS, Kilikian BV, Laluce C (2003) Colloid Surf B 29:309–319. doi:10.1016/S0927-7765(03)00019-5

    Article  Google Scholar 

  6. Kozlowski CA, Ulewicz M, Walkowiak W, Girek T, Jablonska J (2002) Miner Eng 15:677–682. doi:10.1016/S0892-6875(02)00166-8

    Article  CAS  Google Scholar 

  7. Theander K, Pugh RJ (2003) J Colloid Interface Sci 267:9–17. doi:10.1016/S0021-9797(03)00482-X

    Article  CAS  Google Scholar 

  8. Marchal R, Lallement A, Jeandet P, Establet G (2003) J Agric Food Chem 51:2040–2048. doi:10.1021/jf0207833

    Article  CAS  Google Scholar 

  9. Kanicky JR, Shah DO (2003) Langmuir 19:2034–2038. doi:10.1021/la020672y

    Article  CAS  Google Scholar 

  10. Kordialik-Bogacka E, Ambroziak W (2004) J Sci Food Agric 84:1960–1968. doi:10.1002/jsfa.1903

    Article  CAS  Google Scholar 

  11. Abdullah MA, Ariff AB, Marziah M, Ali AM, Lajis NH (2000) Plant Cell Tiss Org Cult 60:205–212. doi:10.1023/A:1006495107778

    Article  CAS  Google Scholar 

  12. Yanatatsaneejit U, Witthayapanyanon A, Rangsunvigit P, Acosta EJ, Sabatini DA, Scamehorn JF, Chavadej S (2005) Sep Sci Technol 40:1537–1553. doi:10.1081/SS-200055995

    Article  CAS  Google Scholar 

  13. Wang YT, Zhang JQ, Yu Y, Li J, Ding L, Zhang HQ (2007) Chin J Anal Chem 35:409–412

    CAS  Google Scholar 

  14. Prat MD, Benito J, Compañó R, Hernández-Arteseros JA, Granados M (2004) J Chromatogr A 1041:27–33. doi:10.1016/j.chroma.2004.04.042

    Article  CAS  Google Scholar 

  15. Bai YP, Zhao LS, Qu CL, Meng XZ, Zhang HQ (2009) J Agric Food Chem 57:10252–10260. doi:10.1021/jf902153a

    Article  CAS  Google Scholar 

  16. Schneiderman E, Stalcup AM (2000) J. Chromatogr B 745:83–102. doi:10.1016/S0378-4347(00)00057-8

    Article  CAS  Google Scholar 

  17. Grumetto L, Montesano D, Seccia S, Albrizio S, Barbato F (2008) J Agric Food Chem 56:10633–10637. doi:10.1021/jf802297z

    Article  CAS  Google Scholar 

  18. Hanioka N, Saito Y, Soyama A, Ando M, Ozawa S, Sawada J (2002) J Chromatogr B 774:105–113. doi:10.1016/S1570-0232(02)00238-6

    Article  CAS  Google Scholar 

  19. Rejtharova M, Rejthar L (2009) J Chromatogr A 1216:8246–8253. doi:10.1016/j.chroma.2009.07.037

    Article  CAS  Google Scholar 

  20. Guermouche MH, Bensalah K (2008) Chromatographia 67(1–2):63–68. doi:10.1365/s10337-007-0465-6

    Article  CAS  Google Scholar 

  21. Tang CM, Huang QX, Yu YY, Peng XZ (2009) Chin J Anal Chem 37(8):1119–1124. doi:10.1016/S1872-2040(08)60120-6

    Article  CAS  Google Scholar 

  22. Xiang G, Yang L, Zhang X, Yang HY, Ren ZY, Miao MM (2009) Chromatographia 70(5–6):1007–1010. doi:10.1365/s10337-009-1253-2

    Article  CAS  Google Scholar 

  23. Chen LG, Zeng QL, Du XB, Sun X, Zhang XP, Xu Y, Yu A, Zhang HQ, Ding L (2009) Anal Bioanal Chem 395:1533–1542. doi:10.1007/s00216-009-3097-x

    Article  CAS  Google Scholar 

  24. Wang YC, Ding WH (2009) J Chromatogr A 1216:6858–6863. doi:10.1016/j.chroma.2009.08.028

    Article  CAS  Google Scholar 

  25. Liu ZQ, Luo XY, Liu GZ, Chen YP, Wang ZC, Sun YX (2003) J Agric Food Chem 51:2555–2558. doi:10.1021/jf026228i

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanqi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Zhang, H., Wu, L. et al. Foam Floatation-SPE for Separation and Concentration of Trace Ginsenosides. Chroma 72, 39–46 (2010). https://doi.org/10.1365/s10337-010-1589-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-010-1589-7

Keywords

Navigation