Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Potential electronic transition chemical laser: parametric evaluation

Not Accessible

Your library or personal account may give you access

Abstract

Through the utilization of a generalized computer code that calculates the minimum reactive branching ratio required for a species to display optical gain, a parametric study was performed to ascertain which properties of the electronic potential curves of a heteronuclear diatomic molecule have the greatest effect on the suitability of that molecule as a potential electronic transition laser. The results of this study demonstrate that diatomic systems separate into different classes when the question of the minimum required reactive branching ratio is confronted. This separation of molecular systems was translated through the use of compiled molecular constants into a determination of which vibrational-level distribution class is most favorable for specific heteronuclear diatomic molecules to display optical gain; potential laser candidates were pointed out. In addition, a generalized gain equation for electronic transitions heteronuclear diatomic molecules that takes into account both rotational and vibrational partitioning was derived.

© 1975 Optical Society of America

Full Article  |  PDF Article
More Like This
Nonequilibrium Chemical Excitation and Chemical Pumping of Lasers

Kurt E. Shuler, Tucker Carrington, and John C. Light
Appl. Opt. 4(S1) 81-104 (1965)

Rotational relaxation in a line-selected continuous HF chemical laser

J. G. Skifstad and C. M. Chao
Appl. Opt. 14(7) 1713-1718 (1975)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved