Skip to main content
Log in

Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment

  • Reviewed Paper
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

No alloy is immune to hot corrosion attack indefinitely. Coatings can extend the lives of substrate materials used at higher temperatures in corrosive environments by forming protective oxides layers that are reasonably effective for long-term applications. This article is concerned with studying the performance of high-velocity oxyfuel (HVOF) sprayed NiCrBSi, Cr3C2−NiCr, Ni−20Cr, and Stellite-6 coatings on a nickel-base superalloy at 900 °C in the molten salt (Na2SO4-60% V2O5) environment under cyclic oxidation conditions. The thermogravimetric technique was used to establish kinetics of corrosion. Optical microscope, x-ray diffraction, scanning electron microscopy/electron dispersive analysis by x-ray (SEM/EDAX), and electron probe microanalysis (EPMA) techniques were used to characterize the as-sprayed coatings and corrosion products. The bare superalloy suffered somewhat accelerated corrosion in the given environmental conditions. whereas hot corrosion resistance of all the coated superalloys was found to be better. Among the coating studied, Ni−20Cr coated superalloy imparted maximum hot corrosion resistance, whereas Stellite-6 coated indicated minimum resistance. The hot corrosion resistance of all the coatings may be attributed to the formation of oxides and spinels of nickel, chromium, or cobalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.S. Liu, K.M. Liang, and S.R. Gu, High-Temperature Oxidation Behavior of Aluminide Coatings on a New Cobalt-Base Superalloy in Air. Corros. Sci., 2001, 43, p 1217–1226.

    Article  CAS  Google Scholar 

  2. P.S. Sidky and M.G. Hocking, Review of Inorganic Coatings and Coating Processes for Reducing Wear and Corrosion. Br Corros J., 1999, 34(3), p 171–183

    Article  CAS  Google Scholar 

  3. W. Brandl, G. Marginean, D. Maghet, and D. Utu, Effects of Specimen Treatment and Surface Preparation on the Isothermal Oxidation Behaviour of the HVOF-Sprayed MCrAIY Coatings, Surf. Coat. Technol., 2004, 188–189, p 20–26.

    Article  CAS  Google Scholar 

  4. W. Brandl, D. Toma, and H.J. Grabke, The Characteristics of Alumina Scales Formed on HVOF-Sprayed MCrAIY Coatings, Surf. Coat. Technol., 1998, 108–109(1–3), p 10–15.

    Article  Google Scholar 

  5. D.W. Parker and G.L. Kutner, HVOF-Spray Technology-Poised for Growth, J. Adv. Mater. Process. 1991, 139(4), p 68–72, 74

    CAS  Google Scholar 

  6. Diamond Jet System and Gun Manual, Metco/Perkin Elmer, 1989

  7. J.M. Gulemany, J. Fernandez, J.M. de Paco, and J. Sanchez, Corrosion Resistance of HVOFWC-Co and TiC Ni−Ti Coatings Sprayed on Commercial Steel. J. Surf. Eng., 1998, 14(2), p 133–135

    Google Scholar 

  8. A. Collazo, X.R. Novo, and C. Perez, Corrosion Behaviour of Cermet Coatings in Artificial Seawater, Electrochim. Acta, 1999, 44(24), p 4289–4296

    Article  CAS  Google Scholar 

  9. K. Tani, M. Adachi, A. Nakahira, and Y. Takatani, A queous Corrosion Behaviour of Thermally Sprayed Coatings for Steel Substrate, Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, Ed., May 8–11, 2000 (Montréal, Québec, Canada), ASM International, 2000, p 1025–1031

  10. P. Gu, B. Arsenault, J.J. Beaudoin, J.G. Legoux, B. Harvey, and J. Fournier, Polarization Resistance of Stainless Steel-Coated Rebars, Cem. Conc. Res., 1998, 28(3), p 321–327

    Article  CAS  Google Scholar 

  11. A.J. Sturgeon and D.C. Buxton, The Electrochemical Corrosion Behavior of HVOF Sprayed Coatings, Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, Ed., May 8–11, 2000 (Montréal, Québec, Canada). ASM International, 2000, p 1011–1015

  12. D. Harvey, O. Lunder, and R. Henriksen, The Development of Corrosion Resistant Coatings by HVOF Spraying, Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, Ed., May 8–11, 2000 (Montréal, Québec, Canada), ASM International, 2000, p 991–997

  13. K.S. Tan, J.A. Wharton, and R.J.K. Wood, Solid Particle Erosion-Corrosion Behaviour of a Novel HVOF Nickel Aluminium Bronze Coating for Marine Applications—Correlation between Mass Loss and Electrochemical Measurements, Wear, 2005, 258(1–4), p 629–640

    Article  CAS  Google Scholar 

  14. M.G. Hocking, Coatings Resistant to Erosive Corrosive and Severe Environments, Surf. Coat. Technol., 1993, 62(1–3), p 460–466

    Article  CAS  Google Scholar 

  15. I. Gurrappa, Identification of Hot Corrosion Resistant MCrA1Y Based Bond Coatings for Gas Turbine Engine Applications, Surf. Coat. Technol 2001, 139(2–3), p 272–283

    Article  CAS  Google Scholar 

  16. G.W. Goward, Overview: Protective Coatings-Purpose, Role, and Design, Mater. Sci. Technol., 1986, 2, p, 194–200

    CAS  Google Scholar 

  17. B.Q. Wang and K. Luer, The Erosion-Oxidation Behaviour of HVOF Cr3C2−NiCr Cermet Coating, Wear, 1994, 174(1–2), p 177–185

    Article  CAS  Google Scholar 

  18. J.M. Guilemany, J. Nutting, and N.L. Isern, Microstructural Examination of HVOF Chromum Carbide Coatings for High Temperature, J. Therm. Spray Technol., 1996, 5(4), p 483–489

    Article  CAS  Google Scholar 

  19. F. Otsubo, H. Era, and K. Kishitake, Structure and Phases in Nickel-Base Self-Fluxing Alloy Coating Containing High Chromium and Boron, J Therm. Spray Technol, 2000, 9(1), p 107–113

    Article  CAS  Google Scholar 

  20. S. Lebaili and S. Hamar-Thibault, Equilibres Liquide-Solide Dans Le Systeme Ni−B−Si Dans la Region Riche en Nickle, Acta Metall, 1987, 35(3), p 701–710, in French

    Article  CAS  Google Scholar 

  21. K.C. Antony, Wear-Resistant Cobalt-Base Alloys, J. Met., 1983, 35(2), p 52–69.

    CAS  Google Scholar 

  22. P. Crook, Cobalt and Cobalt Alloys, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol. 2, Metals Handbook, ASM International, 1991, p 446–454

  23. Y.S. Hwang and R.A. Rapp, Thermochemistry and Solubilities of Oxides in Sodium Sulfate-Vanadate Solutions, Corrosion, 1989, 45(11), p 933–937

    CAS  Google Scholar 

  24. S.N. Tiwari, Ph.D. Thesis, Met. and Mat. Eng. Dept. IIT Roorkee, India, 1997

  25. G.C. Wood and T. Hodgkiss, Mechanism of Oxidation of Dilute Nickel-Chromium Alloys, Nature, 1996, 211, p 1358–1361

    Article  Google Scholar 

  26. B.S. Sidhu and S. Prakash, Evaluation of the Corrosion Behaviour of Plasma-Sprayed Ni3Al Coatings on Steel in Oxidation and Molten Salt Environments at 900 °C, Surf. Coat. Technol., 2003, 166, p 89–100

    Article  CAS  Google Scholar 

  27. H. Singh, D. Puri, and S., Prakash, Some Studies on Hot Corrosion Performance of Plasma Sprayed Coatings on a Fe-Based Superalloy, Surf. Coat. Technol. 2005, 192(1), p 27–38

    Article  CAS  Google Scholar 

  28. “Apparent Porosity in Cemented Carbides,” B 276, Annual Book of ASTM Standards, ASTM, 2005

  29. J.M. Miguel, J.M. Guilemany, and S. Vizcaino, Tribological Study of NiCrBSi Coating Obtained by Different Processes, Tribol. Int., 2003, 36(3), p 181–187

    Article  CAS  Google Scholar 

  30. T. Sahraoui, N.-E. Fenineche, G. Montavon, and C. Coddet, Structure and Wear Behavior of HVOF Sprayed Cr3C2−NiCr and WC-Co Coatings, Mater. Des., 2003, 24(5), p 309–313

    CAS  Google Scholar 

  31. W.-C. Lih, S.H. Yang, C.Y. Su, S.C. Huang, I.C. Hsu, and M.S. Leu, Effects of Process Parameters on Molten Particle Speed and Surface Temperature and the Properties of HVOF CrC/NiCr Coatings, Surf. Coat Technol., 2000, 133–134, p 54–60

    Article  Google Scholar 

  32. T. Sundararajan, S. Kuroda, and A. Fujio, Steam Oxidation Studies on 50Ni-50Cr HVOF Coatings on 9Cr−1Mo Steel: Change in Structure and Morphology across the Coating/Substrate Interface, Mater. Trans., 2004, 45(4), p 1299–1305

    Article  CAS  Google Scholar 

  33. V.H. Hidalgo, J.B. Varela, J.M. Calle, and A.C. Menendez, Characterisation of NiCr Flame and Plasma Sprayed Coatings for Use in High Temperature Regions of Boilers, Surface Eng., 2000, 16(2), p 137–142

    Article  CAS  Google Scholar 

  34. Gitanjaly, Ph.D. Thesis, Met. & Mat. Eng. Dept., IITR, Roorkee, India, 2003

  35. G.A. Kolta, I.F. Hewaidy, and N.S. Felix. Reactions between Sodium Sulphate and Vanadium Pentoxide, Thermochim. Acta, 1972, 4, p 151–164

    CAS  Google Scholar 

  36. S.N. Tiwari and S. Prakash, Studies on the Hot Corrosion Behaviour of Some Superalloys in Na2SO4−V2O5, paper C33, Symposium on Localised Corrosion and Environmental Cracking (SOLCEC) (Kalpakkam, India), Jan 22–24 1997

  37. M., Seiersten and P. Kofstad, The Effect of SO3 on Vanadate-Induced Hot Corrosion, High Temp. Technol., 1987, 5(3), p 115–122

    CAS  Google Scholar 

  38. J. Swaminathan, S. Raghavan, and S.R. Lyer, Studies on the Hot Corrosion of Some Nickel-Base Superalloys by Vanadium Pentoxide. T. Indian I, Metals, 1993, 46(3), p 175–181

    Google Scholar 

  39. G.C. Fryburg, F.J. Kohl, and C.A. Stearn, Chemical Reactions Involved in the Initiation of Hot Corrosion of IN-738, J. Electrochem. Soc., 1987, 131 (12), p 2985–2997

    Article  Google Scholar 

  40. K. Sachs, Accelerated High Temperature Oxidation due to Vanadium Pentoxide, Metallurgia, April 1958, p 167–173

  41. Q.M. Wang, Y.N. Wu, P.L. Ke, H.T. Cao, J. Gong, C. Sun, and L.S. Wen, Hot Corrosion Behavior of AIP NiCoCrAIY(SiB) Coatings on Nickel Base Supperalloys, Surf. Coat. Technol., 2004, 186(3), p 384–397

    Google Scholar 

  42. P. Niranatlumpong, C.B. Ponton, and H.E. Evans, The Failure of Protective Oxides on Plasma-Sprayed NiCrAIY Overlay Coatings, Oxid. Met, 2000, 53(3–4), p 241–258

    Article  CAS  Google Scholar 

  43. B.S. Sidhu, Ph.D. Thesis, Met. & Mat. Eng. Dept., IITR, Roorkee, India, 2003

  44. Y. Longa-Nava, Y.S. Yang, M. Takemoto, and R.A. Rapp, Hot Corrosion of Nickel-Chromium and Nickel-Chromium-Aluminum Thermal-Spray Coatings by Sodium Sulfate-Sodium Metavanadate Salt. Corrosion, 1996, 52(9), p 680–689

    Article  CAS  Google Scholar 

  45. G. Calvarin, R. Molins, and A.M. Huntz, Oxidation Mechanism of Ni−20Cr Foils and its Relation to the Oxide-Scale Microstructure, Oxid. Met, 2000, 53(1–2), p 25–48

    Article  CAS  Google Scholar 

  46. T. Sundararajan, S. Kuroda, K. Nishida, T. Itagaki, and F. Abe, Behaviour of Mn and Si in the Spray Powders during Steam Oxidation of Ni−Cr Thermal Spray Coatings, ISIJ Int., 2004, 44(1), p 139–144.

    CAS  Google Scholar 

  47. S.C. Cha, H.W. Gudenau, and G.T. Bayer, Comparison of Corrosion Behaviour of Thermal Sprayed and Diffusion-Coated Materials, Mater. Corros, 2002, 53, p 195–205.

    Article  CAS  Google Scholar 

  48. K.L. Luthra, Kinetics of the Low Temperature Hot Corrosion of Co−Cr−Al Alloys, J. Electrochem. Soc., 1985, 132(6), p 1293–1298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidhu, T.S., Prakash, S. & Agrawal, R.D. Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment. J Therm Spray Tech 15, 387–399 (2006). https://doi.org/10.1361/105996306X124392

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996306X124392

Keywords

Navigation