Skip to main content

Advertisement

Log in

High weibull modulus HVOF titania coatings

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The mechanical behavior of high-velocity oxyfuel (HVOF) sprayed titania (TiO2) coatings was evaluated using Vickers hardness measurements on the cross section and top surface. The distribution of hardness values for the cross-section and top surface under 25, 50, 100, 300, 500, and 1000 g loads was analyzed via Weibull statistics. The coating microstructure was evaluated using scanning electron microscopy (SEM). It was observed that the microstructural features were similar in the top surface and cross-section, different from the lamellar structure commonly found in thermal spray coatings. X-ray diffraction (XRD) analysis identified rutile as the major coating phase. The in-flight sprayed particle parameters such as temperature and velocity were determined using a commercial diagnostic system based on pyrometry and time-of-flight measurements. The uniformity of the microstructure resulted in a near isotropic behavior of the mechanical properties, such as hardness, in the coating cross-section and top surface. High Weibull modulus values were observed when compared with results of other thermal spray coatings available in the literature. These initial results should contribute to a more general understanding of the conditions necessary to achieve coatings with high uniformity and assist in the engineering of coating microstructures for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. McPherson: “A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings,” Surf. Coat. Technol., 1989, 39–40(1–3), pp. 173–81.

    Article  Google Scholar 

  2. R. McPherson: “The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed Coatings,” Thin Solid Films, 1981, 83(3), pp. 297–310.

    Article  CAS  Google Scholar 

  3. L. Pawlowski: The Science and Engineering of Thermal Spray Coatings, Wiley, West Sussex, UK, 1995.

    Google Scholar 

  4. C.C. Berndt and R. McPherson: “The Adhesion of Plasma Sprayed Ceramic Coatings to Metals, Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems,” Materials Science Research 14, J. Pask and A. Evans, ed., Plenum Press, New York, NY. 1981, pp. 619–28.

    Google Scholar 

  5. P. Ostojic and R. McPherson: “Indentation Toughness Testing of Plasma Sprayed Coatings,” Mater. Forum, 1987, 10(4), pp. 247–55.

    CAS  Google Scholar 

  6. C.K. Lin and C.C. Berndt: “Statistical Analysis of Microhardness Variations in Thermal Spray Coatings,” J. Mater. Sci., 1995, 30, pp. 111–17.

    Article  CAS  Google Scholar 

  7. S.H. Leigh, C.K. Lin, and C.C. Berndt: “Elastic Response of Thermal Spray Deposits Under Indentation Tests,” J. Am. Ceram. Soc., 1997, 80(8), pp. 2093–99.

    Article  CAS  Google Scholar 

  8. R.S. Lima, A. Kucuk, and C.C. Berndt: “Bimodal Distribution of Mechanical Properties on Plasma Sprayed Nanostructured Partially Stabilized Zirconia,” Mater. Sci. Eng. A, 2002, 327, pp. 224–32.

    Article  Google Scholar 

  9. R.S. Lima, A. Kucuk, and C.C. Berndt: “Evaluation of Microhardness and Elastic Modulus of Thermally Sprayed Nanostructured Zirconia Coatings,” Surf. Coat. Technol., 2001, 135, pp. 166–72.

    Article  CAS  Google Scholar 

  10. N. Margadant, S. Siegmann, J. Patscheider, T. Keller, W. Wagner, J. Ilavsky, J. Pisacka, G. Barbezat, and P.P. Fiala: “Microstructure—Property Relationships and Cross-Property-Correlations of Thermal Sprayed Ni-Alloy Coatings” in Thermal Spray 2001—New Surfaces for a New Millenium, C.C. Berndt, K.A. Khor, and E. F. Lugscheider, ed., ASM International, Materials Park, OH, 2001, pp. 643–52.

    Google Scholar 

  11. M. Buchamann and R. Gadow: “Mechanical Characterization of APS and HVOF Sprayed TiO2 Coatings on Light Metals” in Thermal Spray 2001—New Surfaces for a New Millenium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, ed., ASM International, Materials Park, OH, 2001, pp. 643–52.

    Google Scholar 

  12. H. Kurzweg, R.B. Heimann, T. Troczynski, and M.L. Wayman: “Development of Plasma-Sprayed Bioceramic Coatings With Bond Coat Based on Titania and Zirconia,” Biomaterials, 1998, 19, pp. 1507–11.

    Article  PubMed  CAS  Google Scholar 

  13. R.B. Heimann: “Design of Novel Plasma Sprayed Hydroxyapatite-Bond Coat Bioceramic Systems,” J. Therm. Spray Technol., 1999, 8(4), pp. 597–603.

    Article  CAS  Google Scholar 

  14. J.P.P. Singh, M. Sutaria, and M. Ferber: “Use of Indentation Technique to Measure Elastic Modulus of Plasma-Sprayed Zirconia Thermal Barrier Coating,” Ceram. Eng. Sci. Proc., 1997, 18(4B), pp. 191–200.

    Article  CAS  Google Scholar 

  15. D.B. Marshall, T. Noma, and A.G. Evans: “A Simple Method for Determining Elastic-Modulus-to-Hardness Ratio Using Knoop Indentation Measurements,” J. Am. Ceram. Soc., 1982, 65(10), pp. C-175–176.

    Article  CAS  Google Scholar 

  16. T. Valente: “Statistical Evaluation of Vicker’s Indentation Test Results for Thermally Sprayed Materials,” Surf. Coat. Technol., 1997, 90, pp. 14–20.

    Article  CAS  Google Scholar 

  17. M. Factor and I. Roman: “Vickers Microindentation of WC-12%Co Thermal Spray Coating, Part 1: Statistical Analysis of Microhardness Data,” Surf. Coat. Technol., 2000, 132(2–3), pp. 181–93.

    Article  CAS  Google Scholar 

  18. C.C. Berndt, J. Ilasvsky, and J. Karthikeyan: “Microhardness-Lifetime Correlations for Plasma Sprayed Thermal Barrier Coatings” in Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, ed., ASM International, Materials Park, OH, 1992, pp. 941–46.

    Google Scholar 

  19. J. Karthikeyan, A.K. Sinha, and A.R. Biswas: “Impregnation of Thermally Sprayed Coatings for Microstructural Studies,” J. Therm. Spray Technol., 1996, 5(1), pp. 74–78.

    CAS  Google Scholar 

  20. M. Buchmann and R. Gadow: “Mechanical and Tribological Characterization of APS and HVOF Sprayed TiO2 Coatings on Light Metals” in Thermal Spray 2001: New Surfaces for a New Millenium, C.C. Berndt, K.A. Khor, and E. F. Lugscheider, ed., ASM International, Materials Park, OH, 2001, pp. 1003–08.

    Google Scholar 

  21. M. Miyayama, K. Koumoto, and H. Yanagida: “Engineering Properties of Single Oxides” in Engineered Materials Handbook, 4—Ceramic and Glasses, S.J. Schneider, ed., ASM International, Materials Park, OH, 1991, pp. 748–57.

    Google Scholar 

  22. A. Kucuk, R.S. Lima, and C.C. Berndt: “Influence of Plasma Spray Parameters on In-Flight Characteristics of ZrO2-8wt% Y2O3 Ceramic Particles,” J. Am. Ceram. Soc., 2001, 84(4), pp. 685–92.

    Article  CAS  Google Scholar 

  23. A. Kucuk, R.S. Lima, and C.C. Berndt: “Influence of Plasma Spray Parameters on Formation and Morphology of ZrO2-8wt% Y2O3 Deposits,” J. Am. Ceram. Soc., 2001, 84(4), pp. 693–700.

    Article  CAS  Google Scholar 

  24. H.L. de Villiers Lovelock: “Powder/Processing/Structure Relationships in WC-Co Thermal Spray Coatings: A Review of the Published Literature,” J. Therm. Spray Technol., 1998, 7(3), pp. 357–73.

    Article  Google Scholar 

  25. Sulzer Metco—The Coatings Company: www.sulzermetco.com (10/23/2001).

  26. R. Ahmed and M. Hadfield: “Rolling Contact Fatigue Behavior of Thermally Sprayed Rolling Elements,” Surf. Coat. Technol., 1996, 82, pp. 176–86.

    Article  CAS  Google Scholar 

  27. J.K. Wright, J.R. Fincke, R.N. Wright, W.D. Swank, and D.C. Haggard: “Experimental and Finite Element Investigation of Residual Stresses Resulting From the Thermal Spray Process” in Advances in Thermal Spray Science & Technology, C.C. Berndt and S. Sampath, ed., ASM International, Materials Park, OH, 1995, pp. 187–92.

    Google Scholar 

  28. G.D. Quinn: “Hardness Testing of Ceramics,” Adv. Mater. Proc., 1998, 8, pp. 23–27.

    Google Scholar 

  29. D.L. Vasquez, A. Kucuk, R.S. Lima, U. Senturk, and C.C. Berndt: “Elastic Modulus Measurements of Air Plasma Sprayed Yttria Partially Stabilized Zirconia Coatings Using Laser Ultrasonics and Indentation Techniques” in Thermal Spray 2001: New Surfaces for a New Millenium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, ed., ASM International, Materials Park, OH, 2001, pp. 1045–50.

    Google Scholar 

  30. B.R. Lawn and V.R. Howes: “Elastic Recovery at Hardness Indentations,” J. Mater. Sci., 1981, 16, pp. 2745–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, R.S., Marple, B.R. High weibull modulus HVOF titania coatings. J Therm Spray Tech 12, 240–249 (2003). https://doi.org/10.1361/105996303770348357

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996303770348357

Keywords

Navigation