Skip to main content
Log in

Effect of nitrogen ion implantation on the localized corrosion behavior of titanium modified type 316L stainless steel in simulated body fluid

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nitrogen ion implantation on titanium-modified type 316L stainless steel (SS) at the energy of 70 keV was carried out at different doses ranging from 1×1015 to 2.5×1017 ions/cm2. These samples were subjected to open circuit potential (OCP)—time measurement, cyclic polarization, and accelerated leaching studies—in order to discover the optimum dose that can provide good localized corrosion resistance in a simulated body fluid condition. The results showed that the localized corrosion resistance improved with an increase in doses up to 1×1017 ions/cm2, beyond which it started to deteriorate. The results of the accelerated leaching studies showed that the leaching of the major alloying elements was arrested upon nitrogen ion implantation. Gracing incidence x-ray diffraction studies showed the formation of chromium nitrides at a dose of 2.5×1017 ions/cm2. X-ray photoelectron spectroscopy studies revealed the presence of these chromium nitrides in the passive film, which was attributed to the decreased corrosion resistance at a higher dose. Secondary ion mass spectroscopy studies on the passive film showed the variation in the depth profile upon nitrogen ion implantation. Thus, nitrogen ion implantation can be effectively used as a method to improve the corrosion resistance of the orthopedic implant devices made of titanium-modified type 316L SS. The nature of the passive film and its influence on corrosion resistance are discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.E.M. Pohler, Failure and Prevention, Vol 11, Metals Handbook, 9th ed., K. Mills, Ed., American Society for Metals, 1986, p 670

  2. K. Nielsen, Br. Corros. J., Vol 22, 1987, p 272

    CAS  Google Scholar 

  3. M. Sivakumar, U. Kamachi Mudali, and S. Rajeswari, J. Mater. Eng. Perform., Vol 3, 1994, p 744

    Article  CAS  Google Scholar 

  4. M. Sivakumar and S. Rajeswari, J. Mater. Sci. Lett., Vol 11, 1992, p 1039

    Article  CAS  Google Scholar 

  5. M. Sivakumar, U. Kamachi Mudali, and S. Rajeswari, Steel Research, Vol 65, 1994, p 76

    CAS  Google Scholar 

  6. M. Sivakumar, U. Kamachi Mudali, and S. Rajeswari, Proceedings of the Twelfth International Corrosion Congress, Vol 3B, 1993, p 1942

    CAS  Google Scholar 

  7. V. Ashworth, W.A. Grant, and R.P.M. Procter, Corros. Sci., Vol 16, 1976, p 661

    CAS  Google Scholar 

  8. E. McCafferty, P.G. Moore, J.D. Ayers, and G.K. Hubler, Corrosion of Metal Processed by Directed Energy Beams, C.R. Clayton and C.M. Preece, Ed., The Metallurgical Society AIME, New York, 1982, p 1

    Google Scholar 

  9. J. Jedrkowski, J. Martan, J. Masalski, and D.B. Bogomolov, Phys. Stat. Solid, Vol A, 1989, p 112

    Google Scholar 

  10. J.E. Trueman, M.J. Coleman, and K.R. Pirt, Brit. Corros. J., Vol 12, 1977, p 236

    Google Scholar 

  11. U. Kamachi Mudali, R.K. Dayal, J.B. Gnanamoorthy, and P. Rodriguez, Mater. Trans. JIM, Vol 37, 1996, p 1568

    CAS  Google Scholar 

  12. R. Sabot, R. Devaux, A.M. de Becdelievre, and C. Duret-Thual, Corros. Sci., Vol 33, 1992, p 1121

    Article  CAS  Google Scholar 

  13. P. Marcus and M.E. Bussell, Appl. Surf. Sci., Vol 59, 1992, p 7

    Article  CAS  Google Scholar 

  14. M.R. Nair, S. Venkatraman, D.C. Kothari, K.B. Lal, and R. Raman, Nucl. Instr.Meth. in Phys. Res., Vol B34, 1988, p 53

    Article  CAS  Google Scholar 

  15. E. Leito, R.A. Silva, and M.A. Barbosa, J. Mater. Sci.: Mater. Med., Vol 8, 1997, p 365

    Article  Google Scholar 

  16. I. Bertoti, M. Mohai, J.L. Sullivan, and S.O. Saied, Appl. Surf. Sci., Vol 84, 1995, p 357

    Article  CAS  Google Scholar 

  17. U. Kamachi Mudali, R.K. Dayal, S. Venkadesan, and J.B. Gnanamoorthy, Met. Mater. Proc., Vol 8, 1996, p 139

    CAS  Google Scholar 

  18. N.D. Tomashov, G.P. Charnova, and O.N. Marcova, Corrosion, Vol 20, 1964, p 166

    Google Scholar 

  19. Sydberger, Werkst. Korros., Vol 32, 1981, p 179

    Article  Google Scholar 

  20. H.H. Strehblow, Werkst. Korros., Vol 35, 1984, p 437

    Article  CAS  Google Scholar 

  21. A. Cerquetti, F. Mazza, and M. Vigano, Corrosion—NACE-3, R.N. Stachle, B.F. Brown, J. Kruger, and A. Agrawal, Ed., NACE, Texas, 1974, p 644

    Google Scholar 

  22. D.F. Williams, J. Mater. Sci., Vol 22, 1987, p 3421

    Article  CAS  Google Scholar 

  23. U. Kamachi Mudali, T. Sundararajan, K.G.M. Nair, and R.K. Dayal, Proceeding of the International Conference on Corrosion, CORCON-97, NACE, Corrosion and Its Control, A.S. Khanna, M.K. Totlani, and S.K. Singh, Ed., Elsevier, Vol 12, 1997, p 566

    Google Scholar 

  24. U. Kamachi Mudali, T. Sundararajan, K.G.M. Nair, and R.K. Dayal, “Pitting and Intergranular Corrosion Resistance of Nitrogen Ion Implanted Type 304 Stainless Steel,” presented at High Nitrogen Steels (Espoo, Finland), HNS-98, May 1998

  25. R.G. Vardiman and I.L. Singer, Pitting and Intergranular Corrosion Resistance of Nitrogen Ion Implanted Type 304 Stainless Steel, Mater. Lett., Vol 2, 1983, p 150

    Article  CAS  Google Scholar 

  26. J.L. Whitton et al., Mater. Sci. Eng., Vol 69, 1985, p 111

    Article  CAS  Google Scholar 

  27. R. Leutenecker, G. Wagner, T. Louis, V. Gonser, L. Guzman, and A. Molinari, Mater. Sci. Eng., Vol A115, 1989, p 229

    Google Scholar 

  28. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, and G.E. Muilenberg, Ed., Handbook of XPS, Perkin-Elmeir Corp., 1980

  29. J.S. Murday and I.L. Singer, J. Vac. Sci. Technol., Vol 17, 1980, p 327

    Article  Google Scholar 

  30. A. Sadough Vanini, J.P. Audouard, and P. Marcus, Corr. Sci., Vol 36, 1994, p 1825

    Article  Google Scholar 

  31. V. Ashworth, W.A. Grant, R.P.M. Procter, and T.C. Wellinton, Corr. Sci., Vol 16, 1976, p 396

    Google Scholar 

  32. K. Osazawa and N. Okato, Effect of Alloying Elements, Especially Nitrogen, on the Initiation of Pitting in Stainless Steel, Passivity, and Breakdown on Iron and Iron Base Alloys, R. Stachle and H. Okado, Ed., NACE, Texas, 1976, p 135

    Google Scholar 

  33. Y.C. Lu, R. Bandy, C.R. Clayton, and R.C. Newman, J. Electrochem. Soc., Vol 130, 1983, p 1175

    Article  Google Scholar 

  34. R.C. Newman, Y.C. Lu, R. Bandy, and C.R. Clayton, Proc. of Ninth Intern. Congress on Metallic Corrosion, Vol 1, National Research Council, 1984, p 394

    Google Scholar 

  35. R.C. Newman and T. Shahrabi, Vol 27, 1987, p 827

  36. U. Kamachi Mudali, T.P.S. Gill, R.K. Dayal, and J.B. Gnanamoorthy, Werks. Korros., Vol 37, 1986, p 637

    CAS  Google Scholar 

  37. T. Misawa and H. Tanabe, ISIJ International, Vol 36, 1996, p 821

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundararajan, T., Rajeswari, S., Subbaiyan, M. et al. Effect of nitrogen ion implantation on the localized corrosion behavior of titanium modified type 316L stainless steel in simulated body fluid. J. of Materi Eng and Perform 8, 252–260 (1999). https://doi.org/10.1361/105994999770347115

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994999770347115

Keywords

Navigation