Skip to main content
Log in

Nanoindentation behavior of nanolayered metal-ceramic composites

  • Nanomaterials
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Small-length scale multilayered structures are attractive materials due to their extremely high strength and flexibility, relative to conventional laminated composites. In this study, nanolayered laminated composites of Al and SiC were synthesized by DC/RF magnetron sputtering. The microstructure of the multilayered structures was characterized, and the mechanical properties measured by nanoindentation testing. The influence of layer thickness on Young’s modulus and hardness of individual and multilayers was quantified. An analytical model was used to subtract the contribution of the Si substrate, to extract the true modulus of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. El-Sherik, U. Erb, G. Palumbo, and K.T. Aust, Deviations from Hall-Petch Behaviour in As-Prepared Nanocrystalline Nickel, Scr. Metall. Mater., Vol 27 (No. 9), 1992, p 1185–1188

    Article  CAS  Google Scholar 

  2. Y. Wang and N. Herron, Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties, J. Phys. Chem., Vol 95 (No. 2), 1991, p 525–532

    Article  CAS  Google Scholar 

  3. S. Zhang, D. Sun, Y. Fu, and H. Du, Recent Advances of Superhard Nanocomposite Coatings: A Review, Surf. Coat Technol., Vol 167, 2003, p 113–119

    Article  CAS  Google Scholar 

  4. D.T. Read, Tension-Tension Fatigue of Copper Thin Films, Int. J. Fatigue, Vol 20, 1998, p 203–209

    Article  CAS  Google Scholar 

  5. Y.W. Yu Denis and Frans Spaepen, The Yield Strength of Thin Copper Films on Kapton, J. Appl. Phys., Vol 95, 2004, p 2991–2997

    Article  CAS  Google Scholar 

  6. D.T. Read, Yi-Wen Cheng, R.R. Keller, and J.D. McColskey, Tensile Properties of Free-Standing Aluminum Thin Films, Scr. Mater., Vol 45, 2001, p 583–589

    Article  CAS  Google Scholar 

  7. Y.S. Kang and P.S. Ho, Thickness Dependent Mechanical Behavior of Submicron Aluminum Films, J. Electron. Mater. 1997, Vol 26 (No. 7), 1997, p 805–813

    Article  CAS  Google Scholar 

  8. M.A. Haque and M.T. Saif, Mechanical Behavior of 30–50 nm Thick Aluminum Films Under Uniaxial Tension, Scr. Mater., Vol 47, 2002, p 863–867

    Article  CAS  Google Scholar 

  9. F.R. Brotzen, Mechanical Testing of Thin Films, International Materials Reviews, Vol 39 (No. 1), 1994, p 24–45

    Article  CAS  Google Scholar 

  10. H. Huang and F. Spaepen, Tensile Testing of Free-Standing Cu, Ag, and Al Thin Films and Ag/Cu Multilayers, Acta Mater., Vol 48, 2000, p 3261–3269

    Article  CAS  Google Scholar 

  11. D.T. Read and J.W. Dally, Fatigue of Microlithographically-Patterned Free-Standing Aluminum Thin Film Under Axial Stresses, J. Electron. Packaging, Vol 117, 1995, p 1–6

    Article  Google Scholar 

  12. C. Daniel, A. Lasagni, and F. Mucklich, Stress and Texture Evolution of Ni/Al Multi-Film by Laser Interference Irradiation, Surf. Coat Technol., Vol 180–181, 2004, p 478–482

    Article  CAS  Google Scholar 

  13. J. Schumann, W. Brückner, and A. Heinrich, Properties and Applications of Vacuum-Deposited Cu-Cr Films, Thin Solid Films, Vol 228, 1993, p 44–48

    Article  CAS  Google Scholar 

  14. A.T. Alpas, J.D. Embury, D.A. Hardwick, and R.W. Springer, The Mechanical Properties of Laminated Microscale Composites of Al/Al2O3, J. Mater. Sci., 1990, Vol 25, 1990, p 1603–1609

    Article  CAS  Google Scholar 

  15. D.O. Northwood and A.T. Alpas, Mechanical and Tribological Properties of Nanocrystalline and Nanolaminated Surface Coatings, Nanostruct. Mater., 1998, Vol 10 (No. 5), 1998, p 777–793

    Article  CAS  Google Scholar 

  16. G.T. Mearini and R.W. Hoffman, Tensile Properties of Aluminum/Alumina Multi-Layered Thin Films, J. Elect. Mater., Vol 22 (No. 6), 1993, p 623–629

    Article  CAS  Google Scholar 

  17. T.C. Chou, T.G. Nieh, S.D. McAdams, G.M. Pharr, and W.C. Oliver, Mechanical Properties and Microstructures of Metal/Ceramic Microlaminates: Part II. A Mo/Al2O3 System, J. Mater. Res., Vol 7 (No. 10), 1992, p 2774–2784

    Article  CAS  Google Scholar 

  18. C.H. Liu, Wen-Zhi Li, and Heng-De Li, TiC/Metal Nacreous Structures and Their Fracture Toughness Increase, J. Mater. Res., Vol 11 (No. 9), 1996, p 2231–2235

    Article  CAS  Google Scholar 

  19. J. Romero, A. Lousa, E. Martinez, and J. Esteve, Nanometric Chromium/Chromium Carbide Multilayers for Tribological Applications, Surf. Coat. Technol., Vol 163–164, 2003, p 392–397

    Article  Google Scholar 

  20. T.C. Chou, T.G. Niwh, T.Y. Tsui, G.M. Pharr, and W.C. Oliver, Mechanical Properties and Microstructures of Metal/Ceramic Microlaminates: Part I. Nb/MoSi2 Systems, J. Mater. Res., Vol 7 (No. 10), 1992, p 2765–2773

    Article  CAS  Google Scholar 

  21. M. Ben Daia, P. Aubert, S. Labdi, C. Sant, F.A. Sadi, Ph. Houdy, and J.L. Bozet, Nanoindentation Investigation of Ti/TiN Multilayers Films, J. Appl. Phys., Vol 87, 2000, p 7753–7757

    Article  Google Scholar 

  22. Jeong Hoon Lee, Won Mok Kim, Taek Sung Lee, Moon Kyo Chung, Byung-ki Cheong, and Soon Gwang Kim, Mechanical and Adhesion Properties of Al/AlN Multilayered Thin Films, Surf. Coat. Technol., Vol 133–134, 2000, p 220–226

    Article  Google Scholar 

  23. T. de los Arcos, P. Oelhafen, U. Aebi, A. Hefti, M. Duggelin, D. Mathys, and R. Guggenheim, Preparation and Characterization of TiN-Ag Nanocomposite Films, Vacuum, Vol 67, 2002, p 463–470

    Article  Google Scholar 

  24. M.A. Phillips, B.M. Clemens, and W.D. Nix, Microstructure and Nanoindentation Hardness of Al/Al3Sc Multilayers, Acta Mater., Vol 51, 2003, p 3171–3184

    Article  CAS  Google Scholar 

  25. A. Lousa, J. Romero, E. Martýnez, J. Esteve, F. Montala, and L. Carreras, Multilayered Chromium/Chromium Nitride Coatings for Use in Pressure Die-Casting, Surf. Coat. Technol., Vol 146–147, 2001, p 268–273

    Article  Google Scholar 

  26. D-H. Kuo and K-H. Tzeng, Characterization and Properties of R.F.-Sputtered Thin Films of the Alumina-Titania System, Thin Solid Films, Vol 460, 2004, p 327–334

    Article  CAS  Google Scholar 

  27. V.P. Godbole, K. Dovidenko, A.K. Sharma, and J. Narayan, Thermal Reactions and Micro-Structure of TiN-AlN Layered Nano-Composites, Mater. Sci. Eng., Vol B68, 1999, p 85–90

    Article  CAS  Google Scholar 

  28. P. Zhou, H-Y. You, J-H. Jia, J. Li, T. Han, S-Y. Wang, R-J. Zhang, Y-X. Zheng, and L-Y. Chen, Concentration and Size Dependence of Optical Properties of Ag:Bi2O3 Composite Films by Using the Co-Sputtering Method, Thin Solid Films, Vol 455–456, 2004, p 605–608

    Article  CAS  Google Scholar 

  29. B. Miller and H. Ferkel, Al2O3-Nanoparticle Distribution in Plated Nickel Composite Films, Nanostruct. Mater., Vol 10 (No. 8), 1998, p 1285–1288

    Article  Google Scholar 

  30. A. Robertson, U. Erb, and G. Palumbo, Practical Applications for Electrodeposited Nanocrystalline Materials, Nanostruct. Mater., Vol 12, 1999, p 1035–1040

    Article  Google Scholar 

  31. A. Moller and H. Hahn, Synthesis and Characterization of Nanocrystalline Ni/ZrO2 Composite Coatings, Nanostruct. Mater., Vol 12, 1999, p 259–262

    Article  Google Scholar 

  32. D. Sporn, J. Großmann, A. Kaiser, R. Jahn, and A. Berger, Sol-Gel Processing of Nanostructured Ceramic and Ceramic/Metal Composite Materials, Nanostruct. Mater., Vol 6, 1995, p 329–332

    Article  Google Scholar 

  33. W. Liu, Y. Chen, G. Kou, T. Xu, and D.C. Sun, Characterization and Mechanical/Tribological Properties of Nano Au-TiO2 Composite Thin Films Prepared by a Sol-Gel Process, Wear, Vol 254, 2003 p 994–1000

    Article  CAS  Google Scholar 

  34. A. Colclough, B. Dempster, Y. Favry, and D. Valentin, Thermomechanical Behaviour of SiC-Al Composites, Mater. Sci. Eng. A, Vol 135, 1991, p 203–207

    Article  Google Scholar 

  35. V. Ganesh and N. Chawla, Effect of Reinforcement-Particle-Orientation Anisotropy on the Tensile and Fatigue Behavior of Metal-Matrix Composites, Metall. Mater. Trans. A, Vol 35A, 2004, p 53–61

    Article  CAS  Google Scholar 

  36. C.K. Syn, D.R. Lesuer, and O.D. Sherby, Enhancing Tensile Ductility of a Particulate-Reinforced Aluminum Metal Matrix Composite by Lamination with Mg-9%Li Alloy, Mater. Sci. Eng. A, Vol 206, 1996, p 201–207

    Article  Google Scholar 

  37. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., Vol 7 (No. 6), 1992, p 1564–1583

    Article  CAS  Google Scholar 

  38. X. Li and B. Bhushan, A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications, Mater. Characterization, Vol 48, 2002, p 11–36

    Article  CAS  Google Scholar 

  39. H. Gao, C. H. Chiu, and J. Lee, Int. J. Solids Struct., Vol 29, 1992, p 2471–2492

    Article  Google Scholar 

  40. A. Deng, N. Chawla, K.K. Chawla, and M. Koopman, Acta Mater., Vol 52, 2004, p 4291–4303

    Article  CAS  Google Scholar 

  41. X. Deng, M. Koopman, N. Chawla, and K.K. Chawla: Mater. Sci. Eng., Vol 364, 2004, p 241–243

    Article  CAS  Google Scholar 

  42. J. Mencik, D. Munz, E. Quandt, E.R. Weppelmann, and M.V. Swain, Determination of Elastic Modulus of Thin Layers Using Nanoindentation, J. Mater. Res., Vol 12 (No. 9), 1997, p 2475–2484

    Article  CAS  Google Scholar 

  43. M.F. Doerner and W.D. Nix, A Method for Interpreting the Data from Depth-Sensing Indentation Instruments, J. Mater. Res., Vol 1, 1986, p 601–609

    Article  Google Scholar 

  44. R. Saha and W.D. Nix, Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation, Acta Mater., Vol 50, 2002, p 23–38

    Article  CAS  Google Scholar 

  45. R.B. King, Elastic Analysis of Some Punch Problems for a Layered Medium, Int. J. Solids Struct., Vol 23, 1987, p 1657–1664

    Article  Google Scholar 

  46. G.M. Pharr and W.C. Oliver, Measurement of Thin Film Mechanical Properties Using Nanoindentation, MRS Bull., Vol 17 (No. 7), 1992, p 28–33

    Article  Google Scholar 

  47. C. Gamonpilas and E.P. Busso, On the Effect of Substrate Properties on the Indentation Behaviour of Coated Systems, Mater. Sci. Eng. A, Vol 380, 2004, p 52–61

    Article  CAS  Google Scholar 

  48. M.T. Kim, Influence of Substrates on the Elastic Reaction of Films for the Microindentation Tests, Thin Solid Films, Vol 283, 1996, p 12–16

    Article  CAS  Google Scholar 

  49. N. Chawla, V.V. Ganesh, and B. Wunsch, Three-Dimensional (3D) Microstructure Visualization and Nite Element Modeling of the Mechanical Behavior of SiC Particle Reinforced Aluminum Composites, Scr. Mater., Vol 51, 2004, p 161–165

    Article  CAS  Google Scholar 

  50. X. Deng, unpublished data

  51. Y.S. Kang and P.S. Ho, Thickness Dependent Mechanical Behavior of Submicron Aluminum Films, J. Electron. Mater., Vol 26 (No. 7), 1997, p 805–813

    Article  CAS  Google Scholar 

  52. H. Leiste, U. Dambacher, S. Ulrich, and H. Holleck, Microstructure and Properties of Multilayer Coatings with Covalent Bonded Hard Materials, Surf. Coatings Technol., vol. 116–119, 1999, p 313–320.

    Article  Google Scholar 

  53. K.-D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris, and G. Erkens, The Effect of Specimen Roughness and Indenter Tip Geometry on the Determination Accuracy of Thin Hard Coatings Stress-Strain Laws by Nanoindentation, Mater. Characterization, Vol. 49, 2003, p 149–156

    Article  CAS  Google Scholar 

  54. J-Y. Seo, S-Y. Yoon, K. Niihara, and K.H. Kim, Growth and Microhardness of SiC Films by Plasma-Enhanced Chemical Vapor Deposition, Thin Solid Films, Vol 406, 2002, p 138–144

    Article  CAS  Google Scholar 

  55. J.S. Koehler, Attempt to Design a Strong Solid, Phys. Rev., Vol B2, 1970, p 547–551

    Article  Google Scholar 

  56. S.L. Lehoczky, Retardation of Dislocation Generation and Motion in Thin-Layered Metal Laminates, Phys. Rev. Lett., Vol 41, 1978, p 1814–1818

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, X., Cleveland, C., Chawla, N. et al. Nanoindentation behavior of nanolayered metal-ceramic composites. J. of Materi Eng and Perform 14, 417–423 (2005). https://doi.org/10.1361/105994905X56115

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994905X56115

Keywords

Navigation