Skip to main content
Log in

Effect of Y2O3 content on the oxidation behavior of Fe-Cr-Al-based ODS alloys

  • Testing And Evaluation
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A study was conducted to investigate the cyclic oxidation behavior of two oxide dispersion strengthened (ODS) Fe-Cr-Al based alloys containing 0.17 wt.% and 0.7 wt.% Y2O3. The alloys were oxidized in air for 100 h at 1200°C based on a 24 h cycle period. X-ray diffraction (XRD) and analytical transmission electron microscopy (TEM) were used to characterize the structure, morphology, and composition of the oxide scales. Both alloys formed highly adherent and continuous layers of α-Al2O3 exhibiting a morphology indicative of inward scale growth. The role of Y2O3 was to promote adherence by segregating to the grain boundaries within the oxide. Concurrently, Y2O3 generated micro-porosity resulting in a scale of comparatively higher thickness in the alloy with 0.7 wt.% Y2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Benjamin: Metall. Trans., 1, 1970, p. 2943.

    CAS  Google Scholar 

  2. G. Korb and A. Schwaiger: High Temperatures High Pressures, 1989, 21, p. 475.

    CAS  Google Scholar 

  3. W.J. Quadakkers: J. De Physique, 1993, IV(C9 3), p. 177.

    Google Scholar 

  4. E. Grundy and W.H. Patton: High Temperature Alloys: Their Exploitable Potential, Commission of the European Communities, J.B. Marriot, M. Merz, J. Nihoul, and J. Ward, ed., Elsevier, London, 1985, p. 327.

    Google Scholar 

  5. W.J. Quadakkers, H. Holzbrecher, K.G. Briefs, and H. Beske: Oxid. Met., 1989, 32, p. 67.

    Article  CAS  Google Scholar 

  6. M.J. Bennett, H. Romary, and J.B. Price: Heat Resistant Materials, ASM International, Materials Park, OH, 1991, p. 95.

    Google Scholar 

  7. H. Hedrich: New Materials by Mechanical Alloying Techniques, E. Artz and L. Schulz, ed., Deutsche Gesellschaft für Materialkunde, Frankfurt, Germany, 1990, p. 227.

    Google Scholar 

  8. D.P. Whittle and J. Stringer: Phil. Trans. R. Soc. Lond., 1980, A295, p. 309.

    Article  Google Scholar 

  9. F.H. Stott: Rep. Prog. Phys., 1987, 50, p. 861.

    Article  CAS  Google Scholar 

  10. K. Przybylski and G.J. Yurek: Mater. Sci. Forum, 1989, 43, p. 1.

    CAS  Google Scholar 

  11. J. Jedlinski: Solid State Phenomenon, 1992, 21/22, p. 335.

    Article  Google Scholar 

  12. G.C. Wood and F.H. Stott: High Temperature Corrosion, R.A. Rapp, ed., NACE-6, Houston, TX, 1983, p. 227.

    Google Scholar 

  13. H.M. Hindam and D.P. Whittle: Oxid. Met., 1982, 18(5/6), p. 245.

    Article  CAS  Google Scholar 

  14. A.M. Huntz: The Role of Active Elements in the Oxidation Behavior of Metals and Alloys, E. Lang, ed., Elsevier Applied Science, London/New York, 1989, p. 81.

    Google Scholar 

  15. A.M. Huntz: Mater. Sci. Eng., 1987, 87, p. 251.

    Article  CAS  Google Scholar 

  16. F.H. Stott and G.C. Wood: Mater. Sci. Eng., 1987, 87, p. 267.

    Article  CAS  Google Scholar 

  17. J. Stringer, B.A. Wilcox, and R.I. Jaffe: Oxid. Met., 1972, 5, p. 11.

    Article  CAS  Google Scholar 

  18. O.T. Goncel, J. Stringer, and D.P. Whittle: Corros. Sci., 1978, 18, p. 701.

    Article  CAS  Google Scholar 

  19. S.B. Newcomb, C.B. Boothroyd, and W.M. Stobbs: J. Microsc., 1985, 140, p. 195.

    CAS  Google Scholar 

  20. A. Czyrska-Filemonowicz, R.A. Versaci, D. Clemens, and W.J. Quadakkers: Microscopy of Oxidation, 2, S.B. Newcomb and M.J. Bennett, ed., Institute of Materials, London, UK, 1993, p. 288.

    Google Scholar 

  21. D.P. Whittle and H.M. Hindham: Corrosion-Erosion-Wear of Materials in Emerging Energy Systems, NACE, Houston, TX, 1982, p. 54.

    Google Scholar 

  22. J.D. Kuenzly and D.L. Douglass: Oxid. Met., 1974, 8(3), p. 139.

    Article  CAS  Google Scholar 

  23. A. Kumar, M. Nasrallah, and D.L. Douglas: Oxid. Met., 1974, 8(4), p. 227.

    Article  CAS  Google Scholar 

  24. T.A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton: J. Electrochem Soc., 1984, 131, p. 923.

    Article  CAS  Google Scholar 

  25. T.A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D.P. Leta: Oxid. Met., 1988, 29(5/6), p. 445.

    Article  CAS  Google Scholar 

  26. M. Le Gall, B. Lesage, C. Monty, and J. Bernardini: J. Mater. Sci., 30, 1995, p. 201.

    Article  Google Scholar 

  27. A. Czyrska-Filemonowicz and B. Dubiel: J. Mat. Processing Tech., 1997, 64, pp. 53–64.

    Article  Google Scholar 

  28. D.A. Smith, C.M.F. Rae, and C.M. Grovenor: Grain Boundary Structure and Kinetics, ASM Materials Science Seminar, ASM, Metals Park, OH, 1980, p. 350.

    Google Scholar 

  29. K.T. Faber and A.G. Evans: Acta Met., 1983, 31, pp. 565–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ul-Hamid, A. Effect of Y2O3 content on the oxidation behavior of Fe-Cr-Al-based ODS alloys. J. of Materi Eng and Perform 12, 87–94 (2003). https://doi.org/10.1361/105994903770343529

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994903770343529

Keywords

Navigation