Skip to content
Publicly Available Published by De Gruyter May 18, 2010

Mechanostereochemistry

  • Mark A. Olson , Youssry Y. Botros and J. Fraser Stoddart

Stereochemistry—in both its static and dynamic variants—has progressed apace now for more than a century to incorporate all aspects of covalent, coordinative, and noncovalent bonding at levels of structure which encompass constitution, configuration, and conformation. The advent of the mechanical bond in more recent times is now providing opportunities for the emergence of new stereochemical tenets and concepts, some of which bear close analogies with those of days gone by in chemistry. Since terminology helps to define and disseminate a discipline, we advocate that the term “mechanostereochemistry” be used to describe the chemistry of molecules with mechanical bonds.


Conference

IUPAC Congress, IUPAC Congress, CONGRESS, IUPAC Congress, 42nd, Glasgow, UK, 2009-08-02–2009-08-07


References

1 10.1007/BF00899187, H. Frisch, I. Martin, H. Mark. Monatsh. Chem.84, 250 (1953).Search in Google Scholar

2 10.1126/science.1070821, G. M. Whitesides, B. A. Grzybowski. Science295, 2418 (2002).Search in Google Scholar

3a 10.1016/0010-8545(90)85007-F, D. H. Busch, N. A. Stephenson. Coord. Chem. Rev.100, 119 (1990).Search in Google Scholar

3b 10.1021/ar00033a003, S. Anderson, H. L. Anderson, J. K. M. Sanders. Acc. Chem. Res.26, 469 (1993).Search in Google Scholar

3c F. Diederich, P. J. Stang (Eds.). Templated Organic Synthesis, Wiley-VCH, Weinheim (1999).10.1002/9783527613526Search in Google Scholar

3d 10.1073/pnas.052708999, J. F. Stoddart, H.-R. Tseng. Proc. Natl. Acad. Sci. USA99, 4797 (2002).Search in Google Scholar PubMed PubMed Central

3e 10.1002/0471224499.ch2, M. J. Blanco, J. C. Chambron, M. C. Jiménez, J.-P. Sauvage. Top. Stereochem.23, 125 (2003).Search in Google Scholar

3f D. H. Busch. Top. Curr. Chem.249, 1 (2005).Search in Google Scholar

3g 10.1351/pac200880030485, K. E. Griffiths, J. F. Stoddart. Pure Appl. Chem.80, 485 (2008).Search in Google Scholar

4a 10.1016/j.tet.2008.06.035, J. F. Stoddart, H. M. Colquhoun. Tetrahedron64, 8231 (2008).Search in Google Scholar

4b 10.1039/b819333a, J. F. Stoddart. Chem. Soc. Rev.38, 1802 (2009).Search in Google Scholar PubMed

5a G. Schill. Catenanes, Rotaxanes and Knots, Academic Press, New York (1971).Search in Google Scholar

5b J.-P. Sauvage, C. O. Dietrich-Buchecker (Eds.). Molecular Catenanes, Rotaxanes and Knots, Wiley-VCH, Weinheim (1999).10.1002/9783527613724Search in Google Scholar

6 10.1038/nchem.266, In his Tetrahedron Prize Lecture given at the 236th American Chemical Society National Meeting in Philadelphia on 17 August 2008, one (J. F. S.) of the authors proposed the use of the term “mechanostereochemistry” to encompass all aspects of the “mechanical bond” in chemistry. The term mechanostereochemistry has been employed recently in another context. See: I. Frank, U. Friedrichs. Nat. Chem.1, 264 (2009).Search in Google Scholar

7 J.-M Lehn. Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim (1996).Search in Google Scholar

8 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E, S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart. Angew. Chem., Int. Ed.41, 898 (2002).Search in Google Scholar

9 10.1038/nchem.142, J. F. Stoddart. Nat. Chem.1, 14 (2009).Search in Google Scholar

10 10.1039/b817735j, D. J. Tranchemontagne, J. L. Mendoza-Cortés, M. O’Keeffe, O. M. Yaghi. Chem. Soc. Rev.38, 1257 (2009).Search in Google Scholar

11 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X, V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart. Angew. Chem., Int. Ed.39, 3348 (2000).Search in Google Scholar

12a 10.1021/ja01490a061, F. R. Jensen, D. S. Noyce, C. H. Sederholm, A. J. Berlin. J. Am. Chem. Soc.82, 1256 (1960).Search in Google Scholar

12b R. K. Harris, N. Sheppard. Proc. Chem. Soc. 418 (1961).Search in Google Scholar

12c 10.1021/ja01468a029, W. B. Moniz, J. A. Dixon. J. Am. Chem. Soc.83, 1671 (1961).Search in Google Scholar

12d 10.1021/ja00862a015, F. R. Jensen, D. S. Noyce, C. H. Sederholm, A. J. Berlin. J. Am. Chem. Soc.84, 386 (1962).Search in Google Scholar

13 10.1002/anie.198913961, P. R. Ashton, T. T. Goodnow, A. E. Kaifer, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, C. Vicent, D. J. Williams. Angew. Chem., Int. Ed. Engl.28, 1396 (1989).Search in Google Scholar

14 10.1021/ja00013a096, P.-L. Anelli, N. Spencer, J. F. Stoddart. J. Am. Chem. Soc.113, 5131 (1991).Search in Google Scholar

15 10.1135/cccc20051493, S. A. Vignon, J. F. Stoddart. Collect. Czech. Chem. Commun.70, 1493 (2005).Search in Google Scholar

16 10.1016/S0066-4103(08)60345-2, I. O. Sutherland. Annu. Rep. NMR Spectrosc.4, 71 (1971).Search in Google Scholar

17a J. K. N. Jones, J. F. Stoddart, W. A. Szarek. Can. J. Chem.47, 3213 (1969).Search in Google Scholar

17b 10.1002/1521-3765(20000915)6:18<3366::AID-CHEM3366>3.0.CO;2-9, S. Immel, T. Nakagawa, H. J. Lindner, F. W. Lichtenthaler. Chem.—Eur. J.6, 3366 (2000).Search in Google Scholar

18a 10.1002/anie.196507611, E. L. Eliel. Angew. Chem., Int. Ed. Engl.4, 761 (1965).Search in Google Scholar

18b 10.1002/anie.196507741, N. C. Franklin, H. Feltkamp. Angew. Chem., Int. Ed. Engl.4, 774 (1965).Search in Google Scholar

18c 10.1021/ja01040a022, F. R. Jensen, C. H. Bushweller. J. Am. Chem. Soc.91, 3223 (1969).Search in Google Scholar

19 10.1002/anie.198101871, G. Schill, K. Rissler, H. Fritz, W. Vetter. Angew. Chem., Int. Ed. Engl.20, 187 (1981).Search in Google Scholar

20 10.1002/(SICI)1521-3773(19980216)37:3<333::AID-ANIE333>3.0.CO;2-P, M. Asakawa, P. R. Ashton, V. Balzani, A. Credi, C. Hamers, G. Mattersteig, M. Montalti, A. N. Shipway, N. Spencer, J. F. Stoddart, M. S. Tolley, M. Venturi, A. J. P. White. Angew. Chem., Int. Ed.37, 333 (1998).Search in Google Scholar

21a 10.1002/anie.200250453, H.-R. Tseng, S. A. Vignon, J. F. Stoddart. Angew. Chem., Int. Ed.42, 1491 (2003).Search in Google Scholar

21b 10.1002/ejoc.200400530, J. O. Jeppesen, S. Nygaard, S. A. Vignon, J. F. Stoddart. Eur. J. Org. Chem. 196 (2005).Search in Google Scholar

22a 10.1126/science.289.5482.1172, C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, J. R. Heath. Science289, 1172 (2000).Search in Google Scholar

22b 10.1021/ja0114456, C. P. Collier, J. O. Jeppesen, Y. Luo, J. Perkins, E. W. Wong, J. R. Heath, J. F. Stoddart. J. Am. Chem. Soc.123, 12632 (2001).Search in Google Scholar

23 10.1039/b911874h, M. A. Olson, A. B. Braunschweig, T. Ikeda, L. Fang, A. Trabolsi, A. M. Slawin, S. I. Khan, J. F. Stoddart. Org. Biomol. Chem.7, 4391 (2009).Search in Google Scholar

24 10.1002/anie.199720681, Previously, we had advocated (M. C. T. Fyfe, P. T. Glink, S. Menzer, J. F. Stoddart, A. J. P. White, D. J. Williams. Angew. Chem., Int. Ed.36, 2068 (1997)) the use of the term “co-conformation” to designate the different three-dimensional spatial arrangements of the components of mechanically interlocked molecules.Search in Google Scholar

25 10.1039/p19820001649, While conformational diastereoisomerism is now commonplace throughout the reaches of organic chemistry (for an example at the top end of the scale of energy barriers to interconversion, consider the trianthranilides—see: A. Hoorfar, W. D. Ollis, J. A. Price, J. S. Stephanatou, J. F. Stoddart. J. Chem. Soc., Perkin Trans. 1 1649 (1982)), configurational diastereoisomerism dominates organic chemistry across a wide spectrum of different compound types from those where it is displayed around carbon–carbon double bonds in the cis and trans sense (e.g., the TTF unit in the structural formula in Fig. 4a, bottom) to the more conventional situations that exist as soon as two or more chiral elements coexist in the same molecule. Even epimers abound.Search in Google Scholar

26 10.1002/chem.200204589, J. O. Jeppesen, K. A. Nielsen, J. Perkins, S. A. Vignon, A. DiFabio, R. Ballardini, M. T. Gandolfi, M. Venturi, V. Balzani, J. Becher, J. F. Stoddart. Chem.—Eur. J.9, 2982 (2003).Search in Google Scholar

27a 10.1002/1439-7641(20020617)3:6<519::AID-CPHC519>3.0.CO;2-2, Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielsen, E. DeIonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J. F. Stoddart, J. R. Heath. ChemPhysChem.3, 519 (2002).Search in Google Scholar

27b J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halprin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart, J. R. Heath. Nature129, 626 (2007).Search in Google Scholar

28a 10.1021/ja9001585, R. Klajn, L. Fang, A. Coskun, M. A. Olson, P. J. Wesson, J. F. Stoddart, B. A. Grzybowski. J. Am. Chem. Soc.131, 4233 (2009).Search in Google Scholar

28b 10.1038/nchem.432, R. Klajn, M. A. Olson, P. J. Wesson, L. Fang, A. Coskun, A. Trabolsi, J. F. Stoddart, B. A. Grzybowski. Nat. Chem.1, 733 (2009).Search in Google Scholar

28c 10.1021/nl901385c, M. A. Olson, A. Coskun, R. Klajn, L. Fang, S. K. Dey, K. P. Browne, B. A. Grzybowski, J. F. Stoddart. Nano Lett.9, 3185 (2009).Search in Google Scholar PubMed

29a 10.1073/pnas.0504109102, T. Nguyen, H.-R. Tseng, P. C. Celestre, A. H. Flood, Y. Liu, J. I. Zink, J. F. Stoddart. Proc. Natl. Acad. Sci. USA102, 10029 (2005).Search in Google Scholar PubMed PubMed Central

29b 10.1002/adfm.200601217, S. Angelos, E. Johansson, J. F. Stoddart, J. I. Zink. Adv. Funct. Mater.17, 2261 (2007).Search in Google Scholar

29c 10.1039/b9nr00162j, K. K. Cotí, M. E. Belowich, M. Liong, M. W. Ambrogio, Y. A. Lau, H. A. Khatib, J. I. Zink, N. M. Khashab, J. F. Stoddart. Nanoscale1, 16 (2009).Search in Google Scholar PubMed

Online erschienen: 2010-5-18
Erschienen im Druck: 2010-5-18

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.6.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-10-02-09/html
Scroll to top button