Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T13:41:49.543Z Has data issue: false hasContentIssue false

Mineralogical Evolution of a Claystone After Reaction With Iron Under Thermal Gradient

Published online by Cambridge University Press:  01 January 2024

Marie-Camille Jodin-Caumon*
Affiliation:
G2R, Université de Lorraine, CNRS, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
Régine Mosser-Ruck
Affiliation:
G2R, Université de Lorraine, CNRS, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
Aurélien Randi
Affiliation:
G2R, Université de Lorraine, CNRS, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
Olivier Pierron
Affiliation:
G2R, Université de Lorraine, CNRS, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
Michel Cathelineau
Affiliation:
G2R, Université de Lorraine, CNRS, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
Nicolas Michau
Affiliation:
Agence nationale pour la gestion des déchets radioactifs (ANDRA), Direction Recherche et Développement/Service Colis et Matériaux, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France
*
*E-mail address of corresponding author: Marie-Camille.Caumon@univ-lorraine.fr

Abstract

The design of the repository for high-level nuclear waste (HLW) in France consists of a multiple-barrier system including steel canisters in a clay host rock. The system will undergo temperature variations in time and space, the heat source being the HLW within the canisters. The effect of a thermal gradient in space on the Fe-claystone interaction was investigated here by applying a thermal gradient (150–300°C and 80–150°C) to a mix of claystone, Fe, and an aqueous chloride solution over periods of 3 and 6 months. Following the reaction, the starting clay minerals (mostly illite and mixed-layer illite-smectite) evolved toward chlorite, Fe-serpentine, Fe-saponite, mixed-layer chlorite-smectite, or mixed-layer serpentine-smectite as a function of temperature. Iron corrosion made the medium basic and reductive. Magnesium enrichment of clay minerals was observed in the hottest part of the experiment due to Mg migration under the thermal gradient. Reaction progress was enhanced at the lowest temperatures, compared to batch experiments.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bildstein, O. Trotignon, L. Perronnet, M. and Jullien, M., 2006 Modelling iron-clay interactions in deep geological disposal conditions Physics and Chemistry of the Earth, Parts A/B/C 31 618625.CrossRefGoogle Scholar
Caillère, S. Hénin, S. and Rautureau, M., 1982 Minéralogie des Argiles. Structure et Propriétés Physico-Chimiques Paris Masson 184 pp..Google Scholar
Calvert, C.C. Brown, A. and Brydson, R., 2005 Determination of the local chemistry of iron in inorganic and organic materials Journal of Electron Spectroscopy and Related Phenomena 143 175189.CrossRefGoogle Scholar
Charpentier, D. Devineau, K. Mosser-Ruck, R. Cathelineau, M. and Villiéras, F., 2006 Bentonite-iron interactions under alkaline condition: An experimental approach Applied Clay Science 32 113.CrossRefGoogle Scholar
de Combarieu, G. Barboux, P. and Minet, Y., 2007 Iron corrosion in Callovo-Oxfordian argilite: From experiments to thermodynamic/kinetic modelling Physics and Chemistry of the Earth 32 346358.CrossRefGoogle Scholar
de Combarieu, G. Schlegel, M.L. Neff, D. Foy, E. Vantelon, D. Barboux, P. and Gin, S., 2011 Glass-iron-clay interactions in a radioactive waste geological disposal: An integrated laboratory-scale experiment Applied Geochemistry 26 6579.CrossRefGoogle Scholar
Gaucher, E. Robelin, C. Matray, J.M. Négrel, G. Gros, Y. Heitz, J.F. Vinsot, A. Rebours, H. Cassagnabère, A. and Bouchet, A., 2004 ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian formation by investigative drilling Physics and Chemistry of the Earth, Parts A/B/C 29 5577.CrossRefGoogle Scholar
Guillaume, D., 2002 Étude expérimentale du système fer — smectite en présence de solution á 80°C et 300°C PhD thesis Nancy, France Université Henri Poincaré.Google Scholar
Guillaume, D. Neaman, A. Cathelineau, M. Mosser-Ruck, R. Peiffert, C. Abdelmoula, M. Dubessy, J. Villiéras, F. Baronnet, A. and Michau, N., 2003 Experimental synthesis of chlorite from smectite at 300°C in the presence of metallic Fe Clay Minerals 38 281302.CrossRefGoogle Scholar
Guillaume, D. Neaman, A. Cathelineau, M. Mosser-Ruck, R. Peiffert, C. Abdelmoula, M. Dubessy, J. Villiéras, F. and Michau, N., 2004 Experimental study of the transformation of smectite at 80 and 300°C in the presence of Fe oxides Clay Minerals 39 1734.CrossRefGoogle Scholar
Jodin-Caumon, M.-C. Mosser-Ruck, R. Rousset, D. Randi, A. Cathelineau, M. and Michau, N., 2010 Effect of a thermal gradient on iron-clay interactions Clays and Clay Minerals 58 667681.CrossRefGoogle Scholar
Kostov, I., 1968 Mineralogy Edinburgh and London Oliver and Boyd 587 pp..Google Scholar
Lantenois, S., 2003 Réactivité fer mé tal/smectites en milieu hydraté á 80°C PhD thesis Orléans, France Université d’Orléans.Google Scholar
Lantenois, S. Lanson, B. Muller, F. Bauer, A. Jullien, M. and Plançon, A., 2005 Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization Clays and Clay Minerals 53 597612.CrossRefGoogle Scholar
Madsen, F.T., 1998 Clay mineralogical investigations related to nuclear waste disposal Clay Minerals 33 109129.CrossRefGoogle Scholar
Martin, F.A. Bataillon, C. and Schlegel, M.L., 2008 Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment Journal of Nuclear Materials 379 8090.CrossRefGoogle Scholar
Marty, N.C.M. Fritz, B. Clément, A. and Michau, N., 2010 Modelling the long term alteration of the engineered bentonite barrier in an underground radioactive waste repository Applied Clay Science 47 8290.CrossRefGoogle Scholar
Mosser-Ruck, R. Cathelineau, M. Guillaume, D. Charpentier, D. Rousset, D. Barres, O. and Michau, N., 2010 Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectite to berthierine, chlorite, vermiculite, or saponite Clays and Clay Minerals 58 280291.CrossRefGoogle Scholar
Neaman, A. Guillaume, D. Pelletier, M. and Villiéras, F., 2003 The evolution of textural properties of Na/Cabentonite following hydrothermal treatment at 80 and 300°C in the presence of Fe and/or Fe oxides Clay Minerals 38 213223.CrossRefGoogle Scholar
Olsson, S. and Karnland, O., 2011 Mineralogical and chemical characteristics of the bentonite in the A2 test parcel of the LOT field experiments at Äspö HRL, Sweden Physics and Chemistry of the Earth, Parts A/B/C 36 15451553.CrossRefGoogle Scholar
Osacký, M. Honty, M. Madejová, J. Bakas, T. and Šucha, V., 2009 Experimental interactions of Slovak bentonites with metallic iron Geologica Carpathica 60 535543.CrossRefGoogle Scholar
Osacký, M. Šucha, V. Czímerová, A. and Madejová, J., 2010 Reaction of smectites with iron in a nitrogen atmosphere at 75°C Applied Clay Science 50 237244.CrossRefGoogle Scholar
Perronnet, M. Jullien, M. Villiéras, F. Raynal, J. Bonnin, D. and Bruno, G., 2008 Evidence of a critical content in Fe(0) on F°Ca7 bentonite reactivity at 80°C Applied Clay Science 38 187202.CrossRefGoogle Scholar
Pierron, O., 2011 Interactions eau-fer-argilite: Rôle des paramètres Liquide/Roche, Fer/Argilite, Température sur la nature des phases minérales PhD Nancy Université Nancy, France Université Henri Poincaré.Google Scholar
Plötze, M. Kahr, G. Dohrmann, R. and Weber, H., 2007 Hydro-mechanical, geochemical and mineralogical characteristics of the bentonite buffer in a heater experiment: The HE-B project at the Mont Terri Rock Laboratory Physics and Chemistry of the Earth 32 730740.CrossRefGoogle Scholar
Rivard, C., 2011 Contribution á l’étude de la stabilité des minéraux constitutifs de l’fargilite du Callovo-Oxfordien en présence de fer á 90°C PhD thesis Nancy, France Nancy-Université — INPL.Google Scholar
Savage, D. Watson, C. Benbow, S. and Wilson, J., 2010 Modelling iron-bentonite interactions Applied Clay Science 47 9198.CrossRefGoogle Scholar
Schlegel, M.L. Bataillon, C. Benhamida, K. Blanc, C. Menut, D. and Lacour, J.-L., 2008 Metal corrosion and argillite transformation at the water-saturated, high-temperature iron-clay interface: A microscopic-scale study Applied Geochemistry 23 26192633.CrossRefGoogle Scholar
Schlegel, M.L. Bataillon, C. Blanc, C. Prêt, D. and Eddy, F., 2010 Anodic activation of iron corrosion in clay media under water-saturated conditions at 90°C: Characterization of the corrosion interface Environmental Science & Technology 44 15031508.CrossRefGoogle Scholar
Truche, L., 2009 Transformations minéralogiques et géochimiques induites par la présence d’hydrogène dans un site de stockage de déchets radioactifs PhD thesis Toulouse, France Université Toulouse III Paul Sabatier.Google Scholar
Truche, L. Berger, G. Destrigneville, C. Guillaume, D. and Giffaut, E., 2010 Kinetics of pyrite to pyrrhotite reduction by hydrogen in calcite buffered solutions between 90 and 180°C: Implications for nuclear waste disposal Geochimica et Cosmochimica Acta 74 28942914.CrossRefGoogle Scholar
Vidal, O., 1997 Experimental study of the thermal stability of pyrophyllite, paragonite, and clays in a thermal gradient European Journal of Mineralogy 9 123140.CrossRefGoogle Scholar
Vidal, O. and Durin, L., 1999 Aluminium mass transfer and diffusion in water at 400–550°C, 2 kbar in the K2O-Al2O3-SiO2-H2O system driven by a thermal gradient or by a variation of temperature with time Mineralogical Magazine 63 633647.CrossRefGoogle Scholar
Vidal, O. Baldeyrou, A. Beaufort, D. Fritz, B. Geoffroy, N. and Lanson, B., 2012 Experimental study of the stability and phase relations of clays at high temperature in a thermal gradient Clays and Clay Minerals 60 200255.CrossRefGoogle Scholar
Wilson, J. Cressey, G. Cressey, B. Cuadros, J. Ragnarsdottir, K.V. Savage, D. and Shibata, M., 2006 The effect of iron on montmorillonite stability. (II) Experimental investigation Geochimica et Cosmochimica Acta 70 323336.CrossRefGoogle Scholar
Wilson, J. Savage, D. Cuadros, J. Shibata, M. and Ragnarsdottir, K.V., 2006 The effect of iron on montmorillonite stability. (I) Background and thermodynamic considerations Geochimica et Cosmochimica Acta 70 306322.CrossRefGoogle Scholar