Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-21T12:48:10.768Z Has data issue: false hasContentIssue false

Character and Amount of I-S Mixed-Layer Minerals and Physical-Chemical Parameters of Two Ceramic Clays from Westerwald, Germany: Implications for Processing Properties

Published online by Cambridge University Press:  01 January 2024

Kerstin Petrick*
Affiliation:
Competence Center for Material Moisture (CMM), KIT-Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany Institute for Functional Interfaces (IFG), KIT-Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
Ralf Diedel
Affiliation:
FGK Forschungsinstitut für Anorganische Werkstoffe-Glas/Keramik-GmbH, 56203 Höhr-Grenzhausen, Germany
Miriam Peuker
Affiliation:
FGK Forschungsinstitut für Anorganische Werkstoffe-Glas/Keramik-GmbH, 56203 Höhr-Grenzhausen, Germany
Matthias Dieterle
Affiliation:
WBB Fuchs, 56412 Ruppach-Goldhausen, Germany
Paul Kuch
Affiliation:
WBB Fuchs, 56412 Ruppach-Goldhausen, Germany
René Kaden
Affiliation:
Institute for Functional Interfaces (IFG), KIT-Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
Peter Krolla-Sidenstein
Affiliation:
Institute for Functional Interfaces (IFG), KIT-Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
Rainer Schuhmann
Affiliation:
Competence Center for Material Moisture (CMM), KIT-Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany Institute for Functional Interfaces (IFG), KIT-Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
Katja Emmerich
Affiliation:
Competence Center for Material Moisture (CMM), KIT-Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany Institute for Functional Interfaces (IFG), KIT-Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
*
* E-mail address of corresponding author: kerstin.petrick@kit.edu

Abstract

The industrial assessment of ceramic clays commonly consists of the determination of just two parameters, the particle-size distribution and the chemical composition; other parameters may also be important, however. The aim of the present study was to show that a careful determination of the mineralogical phase content provides valuable additional information on the processing behavior of ceramic clays.

Two ceramic clays (W1 andW2) from theWesterwald area, Germany, were evaluated as being the same with respect to industrial screening criteria, but showed different processing properties. In order to elucidate the different behaviors, both clays were investigated comprehensively using a multi-method approach combining physical-chemical and mineralogical methods.

Different aggregation characteristics for the two clays were revealed by determining the grain-size distribution with and without Na-pyrophosphate as a dispersant. In addition, W1 showed a greater electrical conductivity and soluble-salt concentration which promoted dispersion behavior.

The phase content was identified both for bulk materials and for several grain-size fractions by X-ray diffraction (XRD) and Rietveld analysis. The quantitative phase content was crosschecked with the chemical composition by X-ray fluorescence (XRF) analysis. Additional information was gathered by thermal analysis, cation exchange capacity (CEC) measurements, Mössbauer spectroscopy, and optical microscopy. While bulk samples of W1 and W2 showed nearly the same mineralogical and chemical compositions, investigation of the clay-size fractions (0.6–2 μm, <0.6 mm) revealed differences in the composition of the 2:1 layer silicates. The percentages of smectite in the mixed-layer I-S, as well as the amount of kaolinite, discrete illite, and smectite were determined by one-dimensional XRD profile fitting (ODPF). Best-fitting results for W1 were achieved for a physical mixture of an illite-rich I-S mixed-layer mineral (R3 I(0.9)-S) with discrete smectite, whereas W2 was characterized by a greater proportion of smectite in the mixed-layer (R1 I(0.8)-S), without discrete smectite. Based on the different structural features of the swellable clays, a qualitative delamination model for the 2:1 layer silicates during processing of the clays was derived. The model provides a further approach, aside from aggregation characteristics, to help understand the clay-processing behavior, which was found to be different for the two ceramic clays investigated.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bascomb, C.L., 1968 Distribution of pyrophosphate — extractable iron and organic carbon in soils of various groups Journal of Soil Science 19 251268 10.1111/j.1365-2389.1968.tb01538.x.CrossRefGoogle Scholar
Beckett, P.H.T., 1989 The use of extractants in studies on trace metals in soils, sewage sludges, and sludge-treated soils Advances in Soil Science 9 143176 10.1007/978-1-4612-3532-3_3.CrossRefGoogle Scholar
Bergmann, J. Friedel, P. and Kleeberg, R., 1998 BGMN — A new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. Commission of Powder Diffraction International Union of Crystallography CPD Newsletter 20 58.Google Scholar
Bland, P.A. Cressey, G. and Menzies, O.N., 2004 Modal mineralogy of carbonaceous chondrites by X-ray diffraction and Mössbauer spectroscopy Meteroritics & Planetary Science 39 316 10.1111/j.1945-5100.2004.tb00046.x.CrossRefGoogle Scholar
Buchan, G.D. Grewal, K.S. Claydon, J.J. and McPherson, R.J., 1993 A comparison of sedigraph and pipette methods for soil particle-size analysis Australian Journal of Soil Research 31 407417 10.1071/SR9930407.CrossRefGoogle Scholar
Colombo, C. and Torrent, J., 1991 Relationship between aggregation and iron oxides in Terra Rossa soils from southern Italy Catena 18 5159 10.1016/0341-8162(91)90006-J.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 2003 The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses Weinheim, Germany Wiley-VCH 10.1002/3527602097.CrossRefGoogle Scholar
Crosby, N.T. and Patel, I., 1995 General Principles of Good Sampling Practice Cambridge, UK The Royal Society of Chemistry 68.Google Scholar
DIN 19683-2, 1973 Physikalische Laboruntersuchungen - Bestimmung der Korngröβenzusammensetzung nach Vorbehandlung mit Natriumpyrophosphat .Google Scholar
DIN 38414-4, 1984 German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); determination of leachability by water (S 4) .Google Scholar
Drits, V.A., Schultz, L.G. van Olphen, H. Mumpton, F.A., 1987 Mixed-layer minerals: Diffraction methods and structural features Proceedings of the International Clay Conference, Denver, 1985 Bloomington, Indiana, USA The Clay Minerals Society 3345.Google Scholar
Drits, V. and Sakharov, B.A., 1976 X-ray structural analysis of mixed-layer minerals Transactions of Academy of Sciences U.S.S.R. 295 252.Google Scholar
Drits, V.A. Sakharov, B.A. Lindgreen, H. and Salyn, A.L., 1997 Sequential structure transformation of illite-smectitevermiculite during diagenesis of Upper Jurassic shales from the Northern Sea and Denmark Clay Minerals 32 351371 10.1180/claymin.1997.032.3.03.CrossRefGoogle Scholar
Dultz, S., 2002 Effects of parent material and weathering on feldspar content in different particle size fractions from forest soils in NW Germany Geoderma 106 6381 10.1016/S0016-7061(01)00116-1.CrossRefGoogle Scholar
Göhlert, K. Uebel, M. and Händle, F., 2007 Test method for plasticity and extrusion behaviour Extrusion in Ceramics Berlin Springer 347362.Google Scholar
Grafton, D.R., 1968 The Effect of Clay-Adhesive Interaction on the Structure of Coatings Wisconsin, USA The Institute of Paper Chemistry, Lawrence University.Google Scholar
Herbillon, A.J. Mestagh, M.M. Vielvoye, L. and Derouane, E.G., 1976 Iron in kaolinite with special reference to kaolinite fromtro pical soils Clay Minerals 11 201220 10.1180/claymin.1976.011.3.03.CrossRefGoogle Scholar
Hinckley, D.N., 1963 Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays and Clay Minerals 11 229235 10.1346/CCMN.1962.0110122.CrossRefGoogle Scholar
Hofmann, U., 1962 Die Tonminerale und die Plastizität des Tons Keramische Zeitschrift 14 1419.Google Scholar
Hotchkiss, R., 1994 Evaluation of pipet and X-ray procedures for determining particle-size distributions of sediment .Google Scholar
Howard, S.A. Preston, K.D., Bish, D.L. Post, J.E., 1989 Profile fitting of powder diffraction patterns Modern Powder Diffraction Washington, D.C. Mineralogical Society of America 217276 10.1515/9781501509018-011.CrossRefGoogle Scholar
Jasmund, K. and Lagaly, G., 1993 Tonminerale und Tone: Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt 10.1007/978-3-642-72488-6.CrossRefGoogle Scholar
Jeanroy, E. and Guillet, B., 1981 The occurrence of suspended ferruginous particles in pyrophosphate extracts of some soil horizons Geoderma 26 95105 10.1016/0016-7061(81)90078-1.CrossRefGoogle Scholar
Kaufhold, S. and Penner, D., 2006 Applicability of the SER method for quality control of clays from the German ‘Westerwald’ Applied Clay Science 32 5363 10.1016/j.clay.2005.09.008.CrossRefGoogle Scholar
Kaufhold, S. Dohrmann, R. Ufer, K. and Meyer, F.M., 2002 Comparison of methods for the quantification of montmorillonite in bentonites Applied Clay Science 22 145151 10.1016/S0169-1317(02)00131-X.CrossRefGoogle Scholar
Kleeberg, R., 2009 State-of-the-art and trends in quantitative phase analysis of geological and raw materials Zeitschrift für Kristallographie Supplement 30, 4752.Google Scholar
Koster van Groos, A.F. and Guggenheim, S., 1984 The effect of pressure on the dehydration reaction of interlayer water in Na-montmorillonite (SWy-1) American Mineralogist 69 872879.Google Scholar
Krolla-Sidenstein, P. Kaden, R. Emmerich, K. Petrick, K. He, L. and Gliemann, H., 2009 Methods characterising microbial community composition during clay maturation 14th International Clay Conference 2 20.Google Scholar
Kromer, H., 1979 Rohstoffmerkblätter der Deutschen Keramischen Gesellschaft e.V. Berichte der Deutschen Keramischene Gesselschaft .Google Scholar
Kromer, H., 1980 Tertiary clays in the Westerwald area Geologisches Jahrbuch, Reihe D 6984.Google Scholar
Kromer, H. and Rose, D., 1994 Der Einflub des Stoffbestandes auf das Verflüssigungsverhalten von Tonen Berichte der Deutschen Keramischen Gesellschaft 71 245249.Google Scholar
Kromer, H. and Schüller, K.-H., 1973 Eigenschaften von Kaolinen für die Keramik und als Füllstoff Berichte der Deutschen Keramischen Gesellschaft 50 3941.Google Scholar
Lagaly, G. and Mermut, A.R., 1993 Layer charge determination by alkylammoniumi ons Layer Charge Characteristics of 2:1 Silicate Clay Minerals Bloomington, Indiana, USA The Clay Minerals Society 246.Google Scholar
Lanson, B. Sakharov, B.A. Claret, F. and Drits, V., 2009 Diagenetic smectite-to-illite transition in clay-rich sediments: A reappraisal of X-ray diffraction results using the multi-specimen method American Journal of Science 6 476516 10.2475/06.2009.03.CrossRefGoogle Scholar
Lindgreen, H. Drits, V. Sakharov, B.A. Salyn, A.L. Wrang, P. and Dainyak, L.G., 2000 Illite-smectite structural changes during metamorphism in Cambrian Alum shales from the Baltic sea American Mineralogist 85 12231238 10.2138/am-2000-8-916.CrossRefGoogle Scholar
Lippmann, F., 1960 Über eine Apparatur zur Differentialthermoanalyse (DTA) Keramische Zeitschrift 11 475480.Google Scholar
Liu, C.-L. Hart, N. and Peck, HD Jr., 1982 Inorganic pyrophosphate: Energy source for sulfate-reducing bacteria of the Genus Desulfotomaculum Science 23 363364 10.1126/science.217.4557.363.CrossRefGoogle Scholar
Loomis, G.A., 1938 Grain size of whiteware clays as determined by the Andreasen pipette Fortieth Annual Meeting of the American Ceramic Society 393399.CrossRefGoogle Scholar
McCarty, D.K. Drits, V.A. Sakharov, B.A. Zviagina, B.B. Ruffell, A. and Wach, G., 2004 Heterogeneous mixedlayer clays from the Cretaceous greensand, Isle of Wight, southern England Clays and Clay Minerals 52 552575 10.1346/CCMN.2004.0520503.CrossRefGoogle Scholar
McCarty, D.K. Sakharov, B.A. and Drits, V.A., 2008 Early clay diagenesis in gulf coast sediments: New insights from XRD profile modeling Clays and Clay Minerals 56 359379 10.1346/CCMN.2008.0560306.CrossRefGoogle Scholar
Meier, L.P. and Kahr, G., 1999 Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 47 386388 10.1346/CCMN.1999.0470315.CrossRefGoogle Scholar
Menger-Krug, E. Kaden, R. Krolla-Sidenstein, P. Emmerich, K. Petrick, K. Obst, U., Skowroński, A., 2008 Biological processes during maturation 4thMid-European Clay Conference 113.Google Scholar
Mestagh, M.M. Vielvoye, L. and Herbillon, A.J., 1980 Iron in kaolinite: II The relationship between kaolinite crystallinity and iron content. Clay Minerals 15 113.Google Scholar
Moore, D.M. and Reynolds, RC Jr., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press.Google Scholar
Murray, H.H., 2000 Traditional and new applications for kaolin, smectite, and palygorskite: A general overview Applied Clay Science 17 207221 10.1016/S0169-1317(00)00016-8.CrossRefGoogle Scholar
Omotoso, O. McCarty, D.K. Hillier, S. and Kleeberg, R., 2006 Some successful approaches to quantitative mineral analysis as revealed by the 3rd Reynolds Cup Contest Clays and Clay Minerals 54 748760 10.1346/CCMN.2006.0540609.CrossRefGoogle Scholar
Ongley, E.D. Bynoe, M.C. and Percival, J.B., 1981 Physical and geochemical characteristics of suspended solids, Wilton Creek, Ontario Canadian Journal of Earth Science 18 13651379 10.1139/e81-126.CrossRefGoogle Scholar
Pansu, M. and Gautheyrou, J., 2006 Handbook of Soil Analysis Berlin Springer-Verlag 10.1007/978-3-540-31211-6.CrossRefGoogle Scholar
Penner, D. and Lagaly, G., 2001 Influence of anions on the rheological properties of clay mineral dispersions Applied Clay Science 19 131142 10.1016/S0169-1317(01)00052-7.CrossRefGoogle Scholar
Petrick, K. Emmerich, K. Menger-Krug, E. Kaden, R. Dieterle, M. Kuch, P. Diedel, R. Peuker, M. Krolla-Sidenstein, P., Skowroński, A., 2008 Why do two apparently similar German ceramic clays display different rheological properties during maturation? 4thMid-European Clay Conference 128.Google Scholar
Rand, B. and Melton, I.E., 1977 Particle interactions in aqueous kaolinite suspensions: I Effect of pH and electrolyte upon the mode of particle interaction in homoionic sodiumkaol inite suspensions. Journal of Colloid and Interface Science 60 308320.Google Scholar
Rieder, M. Cavazzini, G. D’Yakonov, Y.S. Frank-Kamenetskii, V.A. Gottardi, G. Guggenheim, S. Koval, P.V. Müller, G. Neiva, A.M.R. Radoslovich, E.W. Robert, J.-L. Sassi, F.P. Takeda, H. Weiss, Z. and Wones, D.R., 1998 Nomenclature of the micas Clays and Clay Minerals 46 586595 10.1346/CCMN.1998.0460513.CrossRefGoogle Scholar
Rimstidt, J.D. and Vaughan, D.J., 2003 Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism Geochimica et Cosmochimica Acta 67 873880 10.1016/S0016-7037(02)01165-1.CrossRefGoogle Scholar
Rösler, H.J., 1991 Lehrbuch der Mineralogie Leipzig, Germany Deutscher Verlag für Grundstoffindustrie.Google Scholar
Sakharov, B.A. Lindgreen, H. Salyn, A.L. and Drits, V.A., 1999 Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting Clays and Clay Minerals 47 555566 10.1346/CCMN.1999.0470502.CrossRefGoogle Scholar
Schejbal, F., 1978 Westerwä lder Tone heute, Teil 4: Der Wettbewerb, die Zukunftsaussichten Keramische Zeitschrift 30 362364.Google Scholar
Schmidt, H., 1981 Neuere Erkenntnisse über den Einfluss des Mineralbestandes auf die stofflichen Eigenschaften von grobkermischen Massen und Erzeugnissen Fortschrift für Mineralogie 59 227266.Google Scholar
Schüller, K.-H., 1980 Die Bedeutung untergeordneter Bestandteile bei technologischen Prozessen Fortschrift für Mineralogie 58 79105.Google Scholar
Smykatz-Kloss, W., 1974 Differential Thermal Analysis Berlin Springer-Verlag 10.1007/978-3-642-65951-5.CrossRefGoogle Scholar
Środoń, J., 1981 X-ray identification of randomly interstratified illite-smectite in mixtures with discrete illite Clay Minerals 16 297304 10.1180/claymin.1981.016.3.07.CrossRefGoogle Scholar
Störr, M. (1983) Die Kaolinlagerstä tten der Deutschen Demokratischen Republik. In: Schriftenreihe für geologische Wissenschaften, Vol. 18. Akademie Verlag.Google Scholar
Störr, M. and Schwerdtner, G., 1979 Geologie, Mineralogie und Technologie der DDR Zeitschrift für Angewandte Geologie 25 505514.Google Scholar
Ufer, K. Roth, G. Kleeberg, R. Stanjek, H. Dohrmann, R. and Bergmann, J., 2004 Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach Zeitschrift für Kristallographie 219 519527.CrossRefGoogle Scholar
Ufer, K. Kleeberg, R. Bergmann, J. and Dohrmann, R., 2009 Structurally based modelling of the X-ray diffraction patterns of illite/smectite mixed-layer minerals within the Rietveld method 14th International Clay Conference 1 408.Google Scholar
Vogt, S. Vogt, R., Müller, W. and Fischer, A., 2004 Relationship between minerals and the industrial manufacturing properties of natural clay deposits and the clay bodies produced from them for the heavy clay industry: Part 2. Manufacturing properties, utilization estimates and clay body optimization Z.I.-Ziegelindustrie International Jahrbuch 78103.Google Scholar
Wagner, F.E. and Kyek, A., 2004 Mössbauer spectroscopy in archeology: Introduction and experimental considerations Hyperfine Interactions 154 533 10.1023/B:HYPE.0000032112.94624.95.CrossRefGoogle Scholar
Walling, D.E. and Moorehead, P.W., 1989 The particle size characteristics of fluvial suspended sediment: An overview Hydrobiologia 176/177 125149 10.1007/BF00026549.CrossRefGoogle Scholar
Whitney, G. and Northrop, H.R., 1987 Diagenesis and fluid flow in the San Juan Basin, New Mexico — regional zonation in the mineralogy and stable isotope composition of clay minerals in sandstone American Journal of Science 287 353382 10.2475/ajs.287.4.353.CrossRefGoogle Scholar
Wiegmann, J. Kranz, G. Horte, C.-H. Graul, J. and Doberenz, C., 1978 Beziehungen zwischen den petrologischen Charakteristika und den keramisch-technischen Eigenschaften von Kaolinen mit nennenswerten Gehalten an Illit-Smectit-Wechsellagerungsmineralen Silikattechnik 29 263267.Google Scholar
Winkler, H.G.F., 1954 Bedeutung der Korngröbenverteilung auf die stofflichen Eigenschaften grobkeramischer Erzeugnisse Berichte der Deutschen Keramischene Gesselschaft 31 337343.Google Scholar
Wolters, F., 2005 Classification of montmorillonites PhD thesis Germany Universität Karlsruhe 169.Google Scholar
Wolters, F. Lagaly, G. Kahr, G. Nüesch, R. and Emmerich, K., 2009 A comprehensive characterization of dioctahedral smectites Clays and Clay Minerals 57 115133 10.1346/CCMN.2009.0570111.CrossRefGoogle Scholar
Zeelmaekers, E. McCarty, D.K. and Mystkowski, K., 2007 SYBILLA Houston, Texas Chevron Energy Technology Company.Google Scholar